zoukankan      html  css  js  c++  java
  • 机器学习sklearn(77):算法实例(三十四)回归(六)线性回归大家族(四)多重共线性:岭回归与Lasso(一)岭回归

    1 最熟悉的陌生人:多重共线性

    逆矩阵存在的充分必要条件 

    行列式不为0的充分必要条件

     

     

     

     

     

     

     

    矩阵满秩的充分必要条件

     

     

     

     

     

     

     

     

    2 岭回归

    2.1 岭回归解决多重共线性问题

     

     

     

     

     

     

    2.2 linear_model.Ridge 

    import numpy as np
    import pandas as pd
    from sklearn.linear_model import Ridge, LinearRegression, Lasso
    from sklearn.model_selection import train_test_split as TTS
    from sklearn.datasets import fetch_california_housing as fch
    import matplotlib.pyplot as plt
    housevalue = fch()
    X = pd.DataFrame(housevalue.data) y = housevalue.target
    X.columns = ["住户收入中位数","房屋使用年代中位数","平均房间数目"
               ,"平均卧室数目","街区人口","平均入住率","街区的纬度","街区的经度"] X.head()
    Xtrain,Xtest,Ytrain,Ytest = TTS(X,y,test_size=0.3,random_state=420) #数据集索引恢复
    for i in [Xtrain,Xtest]:
        i.index = range(i.shape[0])
    #使用岭回归来进行建模
    reg = Ridge(alpha=1).fit(Xtrain,Ytrain)
    reg.score(Xtest,Ytest) #交叉验证下,与线性回归相比,岭回归的结果如何变化?
    alpharange = np.arange(1,1001,100)
    ridge, lr = [], []
    for alpha in alpharange:
        reg = Ridge(alpha=alpha)
        linear = LinearRegression()
        regs = cross_val_score(reg,X,y,cv=5,scoring = "r2").mean()
        linears = cross_val_score(linear,X,y,cv=5,scoring = "r2").mean()
        ridge.append(regs)
        lr.append(linears)
    plt.plot(alpharange,ridge,color="red",label="Ridge")
    plt.plot(alpharange,lr,color="orange",label="LR")
    plt.title("Mean")
    plt.legend()
    plt.show()
    #细化一下学习曲线
    alpharange = np.arange(1,201,10)

    #模型方差如何变化?
    alpharange = np.arange(1,1001,100)
    ridge, lr = [], []
    for alpha in alpharange:
        reg = Ridge(alpha=alpha)
        linear = LinearRegression()
        varR = cross_val_score(reg,X,y,cv=5,scoring="r2").var()
        varLR = cross_val_score(linear,X,y,cv=5,scoring="r2").var()
        ridge.append(varR)
        lr.append(varLR)
    plt.plot(alpharange,ridge,color="red",label="Ridge")
    plt.plot(alpharange,lr,color="orange",label="LR")
    plt.title("Variance")
    plt.legend()
    plt.show()

    from sklearn.datasets import load_boston
    from sklearn.model_selection import cross_val_score
    X = load_boston().data
    y = load_boston().target
    Xtrain,Xtest,Ytrain,Ytest = TTS(X,y,test_size=0.3,random_state=420) #先查看方差的变化
    alpharange = np.arange(1,1001,100)
    ridge, lr = [], []
    for alpha in alpharange:
        reg = Ridge(alpha=alpha)
        linear = LinearRegression()
        varR = cross_val_score(reg,X,y,cv=5,scoring="r2").var()
        varLR = cross_val_score(linear,X,y,cv=5,scoring="r2").var()
        ridge.append(varR)
        lr.append(varLR)
    plt.plot(alpharange,ridge,color="red",label="Ridge")
    plt.plot(alpharange,lr,color="orange",label="LR")
    plt.title("Variance")
    plt.legend()
    plt.show()
    #查看R2的变化
    alpharange = np.arange(1,1001,100)
    ridge, lr = [], []
    for alpha in alpharange:
        reg = Ridge(alpha=alpha)
        linear = LinearRegression()
        regs = cross_val_score(reg,X,y,cv=5,scoring = "r2").mean()
        linears = cross_val_score(linear,X,y,cv=5,scoring = "r2").mean()
        ridge.append(regs)
        lr.append(linears)
    plt.plot(alpharange,ridge,color="red",label="Ridge")
    plt.plot(alpharange,lr,color="orange",label="LR")
    plt.title("Mean")
    plt.legend()
    plt.show()
    #细化学习曲线
    alpharange = np.arange(100,300,10)
    ridge, lr = [], []
    for alpha in alpharange:
        reg = Ridge(alpha=alpha)
        #linear = LinearRegression()
        regs = cross_val_score(reg,X,y,cv=5,scoring = "r2").mean()
        #linears = cross_val_score(linear,X,y,cv=5,scoring = "r2").mean()
        ridge.append(regs)
        lr.append(linears)
    plt.plot(alpharange,ridge,color="red",label="Ridge")
    #plt.plot(alpharange,lr,color="orange",label="LR")
    plt.title("Mean")
    plt.legend()
    plt.show()

    2.3 选取最佳的正则化参数取值 

     

    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import linear_model
    #创造10*10的希尔伯特矩阵
    X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
    y = np.ones(10) #计算横坐标
    n_alphas = 200
    alphas = np.logspace(-10, -2, n_alphas) #建模,获取每一个正则化取值下的系数组合
    coefs = []
    for a in alphas:
        ridge = linear_model.Ridge(alpha=a, fit_intercept=False)
        ridge.fit(X, y)
        coefs.append(ridge.coef_) #绘图展示结果
    ax = plt.gca()
    ax.plot(alphas, coefs)
    ax.set_xscale('log')
    ax.set_xlim(ax.get_xlim()[::-1])  #将横坐标逆转
    plt.xlabel('正则化参数alpha')
    plt.ylabel('系数w')
    plt.title('岭回归下的岭迹图')
    plt.axis('tight')
    plt.show()

     

     

     

     

     

    这个类的使用也非常容易,依然使用我们之前建立的加利佛尼亚房屋价值数据集: 
    import numpy as np
    import pandas as pd
    from sklearn.linear_model import RidgeCV, LinearRegression
    from sklearn.model_selection import train_test_split as TTS
    from sklearn.datasets import fetch_california_housing as fch
    import matplotlib.pyplot as plt
    housevalue = fch()
    X = pd.DataFrame(housevalue.data) y = housevalue.target
    X.columns = ["住户收入中位数","房屋使用年代中位数","平均房间数目"
               ,"平均卧室数目","街区人口","平均入住率","街区的纬度","街区的经度"]
    Ridge_ = RidgeCV(alphas=np.arange(1,1001,100)
                    #,scoring="neg_mean_squared_error"
                     ,store_cv_values=True
                    #,cv=5
                   ).fit(X, y)
    #无关交叉验证的岭回归结果
    Ridge_.score(X,y) #调用所有交叉验证的结果
    Ridge_.cv_values_.shape
    #进行平均后可以查看每个正则化系数取值下的交叉验证结果
    Ridge_.cv_values_.mean(axis=0) #查看被选择出来的最佳正则化系数
    Ridge_.alpha_
  • 相关阅读:
    Classview配置与访问
    MongoDB(NoSQL) 非关系型数据库
    服务器出现500错误的时候,让PHP显示错误信息
    Linux_目录介绍
    各类ip地址范围和私有地址范围
    Raid_磁盘冗余阵列
    Python_文件操作_读
    Git操作命令
    记录关于校园网登录不了腾讯的软件得问题解决
    关于科研方面分享的一些经验
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14965101.html
Copyright © 2011-2022 走看看