zoukankan      html  css  js  c++  java
  • 机器学习sklearn(89):算法实例(46)分类(25)XGBoost(三)梯度提升树(二)有放回随机抽样:重要参数subsample/迭代决策树:重要参数eta

    1 有放回随机抽样:重要参数subsample

     

     

     

     

     

    axisx = np.linspace(0,1,20)
    rs = []
    for i in axisx:
        reg = XGBR(n_estimators=180,subsample=i,random_state=420)
        rs.append(CVS(reg,Xtrain,Ytrain,cv=cv).mean())
    print(axisx[rs.index(max(rs))],max(rs))
    plt.figure(figsize=(20,5))
    plt.plot(axisx,rs,c="green",label="XGB")
    plt.legend()
    plt.show()
    #细化学习曲线
    axisx = np.linspace(0.05,1,20)
    rs = []
    var = []
    ge = []
    for i in axisx:
        reg = XGBR(n_estimators=180,subsample=i,random_state=420)
        cvresult = CVS(reg,Xtrain,Ytrain,cv=cv)
        rs.append(cvresult.mean())
        var.append(cvresult.var())
        ge.append((1 - cvresult.mean())**2+cvresult.var())
    print(axisx[rs.index(max(rs))],max(rs),var[rs.index(max(rs))])
    print(axisx[var.index(min(var))],rs[var.index(min(var))],min(var))
    print(axisx[ge.index(min(ge))],rs[ge.index(min(ge))],var[ge.index(min(ge))],min(ge))
    rs = np.array(rs)
    var = np.array(var)
    plt.figure(figsize=(20,5))
    plt.plot(axisx,rs,c="black",label="XGB")
    plt.plot(axisx,rs+var,c="red",linestyle='-.')
    plt.plot(axisx,rs-var,c="red",linestyle='-.')
    plt.legend()
    plt.show()
    #继续细化学习曲线
    axisx = np.linspace(0.75,1,25) #不要盲目找寻泛化误差可控部分的最低值,注意观察结果
    #看看泛化误差的情况如何
    reg = XGBR(n_estimators=180
               ,subsample=0.7708333333333334
               ,random_state=420).fit(Xtrain,Ytrain)
    reg.score(Xtest,Ytest)
    MSE(Ytest,reg.predict(Xtest))
    #这样的结果说明了什么?

     2 迭代决策树:重要参数eta

     

     

     

     

     

    #首先我们先来定义一个评分函数,这个评分函数能够帮助我们直接打印Xtrain上的交叉验证结果
    def regassess(reg,Xtrain,Ytrain,cv,scoring = ["r2"],show=True):
        score = []
        for i in range(len(scoring)):
            if show:
                print("{}:{:.2f}".format(scoring[i]
                                         ,CVS(reg
                                             ,Xtrain,Ytrain
                                             ,cv=cv,scoring=scoring[i]).mean()))
            score.append(CVS(reg,Xtrain,Ytrain,cv=cv,scoring=scoring[i]).mean())
        return score
    #运行一下函数来看看效果
    regassess(reg,Xtrain,Ytrain,cv,scoring = ["r2","neg_mean_squared_error"])
    #关闭打印功能试试看?
    regassess(reg,Xtrain,Ytrain,cv,scoring = ["r2","neg_mean_squared_error"],show=False) #观察一下eta如何影响我们的模型:
    from time import time
    import datetime
    for i in [0,0.2,0.5,1]:
        time0=time()
        reg = XGBR(n_estimators=180,random_state=420,learning_rate=i)
        print("learning_rate = {}".format(i))
        regassess(reg,Xtrain,Ytrain,cv,scoring = ["r2","neg_mean_squared_error"])
        print(datetime.datetime.fromtimestamp(time()-time0).strftime("%M:%S:%f"))
        print("	")

    axisx = np.arange(0.05,1,0.05)
    rs = []
    te = []
    for i in axisx:
        reg = XGBR(n_estimators=180,random_state=420,learning_rate=i)
        score = regassess(reg,Xtrain,Ytrain,cv,scoring = 
    ["r2","neg_mean_squared_error"],show=False)
        test = reg.fit(Xtrain,Ytrain).score(Xtest,Ytest)
        rs.append(score[0])
        te.append(test)
    print(axisx[rs.index(max(rs))],max(rs))
    plt.figure(figsize=(20,5))
    plt.plot(axisx,te,c="gray",label="XGB")
    plt.plot(axisx,rs,c="green",label="XGB")
    plt.legend()
    plt.show()

  • 相关阅读:
    揭秘青岛富二代接班路线 曝红领集团小美女总裁(图)-青青岛社区
    EF架构~TransactionScope与SaveChanges的关系
    LindAgile.Modules模块化的设计
    Linux~其实shell脚本也很简单
    Node.js~ioredis处理耗时请求时连接数瀑增
    Mongodb在CSharp里实现Aggregate
    微创业怎么样:微创业是否是以后的潮流?
    轻量级C语言实现的minixml解析库入门教程
    服务器:RAID、AHCI、IDE
    java web filter 之一 基础实现
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14967977.html
Copyright © 2011-2022 走看看