zoukankan      html  css  js  c++  java
  • HIVE高级(15):优化(15) Explain 查看执行计划(三)

    0 简介

    Hive SQL的执行计划描述SQL实际执行的整体轮廓,通过执行计划能了解SQL程序在转换成相应计算引擎的执行逻辑,掌握了执行逻辑也就能更好地把握程序出现的瓶颈点,从而能够实现更有针对性的优化。此外还能帮助开发者识别看似等价的SQL其实是不等价的,看似不等价的SQL其实是等价的SQL。可以说执行计划是打开SQL优化大门的一把钥匙

    要想学SQL执行计划,就需要学习查看执行计划的命令:explain,在查询语句的SQL前面加上关键字explain是查看执行计划的基本方法。

    学会explain,能够给我们工作中使用hive带来极大的便利!

    查看SQL的执行计划

    Hive提供的执行计划目前可以查看的信息有以下几种:

    • explain:查看执行计划的基本信息;

    • explain dependency:dependency在explain语句中使用会产生有关计划中输入的额外信息。它显示了输入的各种属性;

    • explain authorization:查看SQL操作相关权限的信息;

    • explain vectorization:查看SQL的向量化描述信息,显示为什么未对Map和Reduce进行矢量化。从 Hive 2.3.0 开始支持;

    • explain analyze:用实际的行数注释计划。从 Hive 2.2.0 开始支持;

    • explain cbo:输出由Calcite优化器生成的计划。CBO 从 Hive 4.0.0 版本开始支持;

    • explain locks:这对于了解系统将获得哪些锁以运行指定的查询很有用。LOCKS 从 Hive 3.2.0 开始支持;

    • explain ast:输出查询的抽象语法树。AST 在 Hive 2.1.0 版本删除了,存在bug,转储AST可能会导致OOM错误,将在4.0.0版本修复;

    • explain extended:加上 extended 可以输出有关计划的额外信息。这通常是物理信息,例如文件名,这些额外信息对我们用处不大;

    1.  explain 

    1.1 explain 的用法

    Hive提供了explain命令来展示一个查询的执行计划,这个执行计划对于我们了解底层原理,Hive 调优,排查数据倾斜等很有帮助。

    使用语法如下:

    explain query;

    在 hive cli 中输入以下命令(hive 2.3.7):

    explain select sum(id) from test1;

    得到结果:

    STAGE DEPENDENCIES:
      Stage-1 is a root stage
      Stage-0 depends on stages: Stage-1
    
    STAGE PLANS:
      Stage: Stage-1
        Map Reduce
          Map Operator Tree:
              TableScan
                alias: test1
                Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
                Select Operator
                  expressions: id (type: int)
                  outputColumnNames: id
                  Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
                  Group By Operator
                    aggregations: sum(id)
                    mode: hash
                    outputColumnNames: _col0
                    Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                    Reduce Output Operator
                      sort order:
                      Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                      value expressions: _col0 (type: bigint)
          Reduce Operator Tree:
            Group By Operator
              aggregations: sum(VALUE._col0)
              mode: mergepartial
              outputColumnNames: _col0
              Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
              File Output Operator
                compressed: false
                Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
                table:
                    input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                    output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                    serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
    
      Stage: Stage-0
        Fetch Operator
          limit: -1
          Processor Tree:
            ListSink

    看完以上内容有什么感受,是不是感觉都看不懂,不要着急,下面将会详细讲解每个参数,相信你学完下面的内容之后再看 explain 的查询结果将游刃有余。

    一个HIVE查询被转换为一个由一个或多个stage组成的序列(有向无环图DAG)。这些stage可以是MapReduce stage,也可以是负责元数据存储的stage,也可以是负责文件系统的操作(比如移动和重命名)的stage

    我们将上述结果拆分看,先从最外层开始,包含两个大的部分:

    1. stage dependencies:各个stage之间的依赖性
    2. stage plan:各个stage的执行计划

    先看第一部分 stage dependencies ,包含两个 stage,Stage-1 是根stage,说明这是开始的stage,Stage-0 依赖 Stage-1,Stage-1执行完成后执行Stage-0。

    再看第二部分 stage plan,里面有一个 Map Reduce,一个MR的执行计划分为两个部分:

    1. Map Operator Tree:MAP端的执行计划树
    2. Reduce Operator Tree:Reduce端的执行计划树

    这两个执行计划树里面包含这条sql语句的 operator:

    1. TableScan:表扫描操作,map端第一个操作肯定是加载表,所以就是表扫描操作,常见的属性:
      • alias:表名称
      • Statistics:表统计信息,包含表中数据条数,数据大小等
    2. Select Operator:选取操作,常见的属性 :
      • expressions:需要的字段名称及字段类型
      • outputColumnNames:输出的列名称
      • Statistics:表统计信息,包含表中数据条数,数据大小等
    3. Group By Operator:分组聚合操作,常见的属性:
      • aggregations:显示聚合函数信息
      • mode:聚合模式,值有 hash:随机聚合,就是hash partition;partial:局部聚合;final:最终聚合
      • keys:分组的字段,如果没有分组,则没有此字段
      • outputColumnNames:聚合之后输出列名
      • Statistics:表统计信息,包含分组聚合之后的数据条数,数据大小等
    4. Reduce Output Operator:输出到reduce操作,常见属性:
      • sort order:值为空 不排序;值为 + 正序排序,值为 - 倒序排序;值为 +-  排序的列为两列,第一列为正序,第二列为倒序
    5. Filter Operator:过滤操作,常见的属性:
      • predicate:过滤条件,如sql语句中的where id>=1,则此处显示(id >= 1)
    6. Map Join Operator:join 操作,常见的属性:
      • condition map:join方式 ,如Inner Join 0 to 1 Left Outer Join0 to 2
      • keys: join 的条件字段
      • outputColumnNames:join 完成之后输出的字段
      • Statistics:join 完成之后生成的数据条数,大小等
    7. File Output Operator:文件输出操作,常见的属性
      • compressed:是否压缩
      • table:表的信息,包含输入输出文件格式化方式,序列化方式等
    8. Fetch Operator 客户端获取数据操作,常见的属性:
      • limit,值为 -1 表示不限制条数,其他值为限制的条数

    1.2 explain 的使用场景

    本节介绍 explain 能够为我们在生产实践中带来哪些便利及解决我们哪些迷惑

    https://www.cnblogs.com/qiu-hua/p/14472190.html

    2. explain dependency的用法

    explain dependency用于描述一段SQL需要的数据来源,输出是一个json格式的数据,里面包含以下两个部分的内容:

    • input_partitions:描述一段SQL依赖的数据来源表分区,里面存储的是分区名的列表,如果整段SQL包含的所有表都是非分区表,则显示为空。

    • input_tables:描述一段SQL依赖的数据来源表,里面存储的是Hive表名的列表。

    使用explain dependency查看SQL查询非分区普通表,在 hive cli 中输入以下命令:

    explain dependency select s_age,count(1) num from student_orc;

    得到结果:

    {"input_partitions":[],"input_tables":[{"tablename":"default@student_tb _orc","tabletype":"MANAGED_TABLE"}]}

    使用explain dependency查看SQL查询分区表,在 hive cli 中输入以下命令:

    explain dependency select s_age,count(1) num from student_orc_partition;

    得到结果:

    {"input_partitions":[{"partitionName":"default@student_orc_partition@ part=0"}, 
    {"partitionName":"default@student_orc_partition@part=1"}, 
    {"partitionName":"default@student_orc_partition@part=2"}, 
    {"partitionName":"default@student_orc_partition@part=3"},
    {"partitionName":"default@student_orc_partition@part=4"}, 
    {"partitionName":"default@student_orc_partition@part=5"},
    {"partitionName":"default@student_orc_partition@part=6"},
    {"partitionName":"default@student_orc_partition@part=7"},
    {"partitionName":"default@student_orc_partition@part=8"},
    {"partitionName":"default@student_orc_partition@part=9"}], 
    "input_tables":[{"tablename":"default@student_orc_partition", "tabletype":"MANAGED_TABLE"}]

    explain dependency的使用场景有两个:

    • 场景一:快速排除。快速排除因为读取不到相应分区的数据而导致任务数据输出异常。例如,在一个以天分区的任务中,上游任务因为生产过程不可控因素出现异常或者空跑,导致下游任务引发异常。通过这种方式,可以快速查看SQL读取的分区是否出现异常。

    • 场景二:理清表的输入,帮助理解程序的运行,特别是有助于理解有多重子查询,多表连接的依赖输入。

    下面通过两个案例来看explain dependency的实际运用:

    案例一:识别看似等价的代码

    对于刚接触SQL的程序员,很容易将

    select * from a inner join b on a.no=b.no and a.f>1 and a.f<3;

    等价于

    select * from a inner join b on a.no=b.no where a.f>1 and a.f<3;

    我们可以通过案例来查看下它们的区别:

    代码1:

    select 
    a.s_no 
    from student_orc_partition a 
    inner join 
    student_orc_partition_only b 
    on a.s_no=b.s_no and a.part=b.part and a.part>=1 and a.part<=2;

    代码2:

    select 
    a.s_no 
    from student_orc_partition a 
    inner join 
    student_orc_partition_only b 
    on a.s_no=b.s_no and a.part=b.part 
    where a.part>=1 and a.part<=2;

    我们看下上述两段代码explain dependency的输出结果:

    代码1的explain dependency结果

    {"input_partitions": 
    [{"partitionName":"default@student_orc_partition@part=0"}, 
    {"partitionName":"default@student_orc_partition@part=1"}, 
    {"partitionName":"default@student_orc_partition@part=2"},
    {"partitionName":"default@student_orc_partition_only@part=1"}, 
    {"partitionName":"default@student_orc_partition_only@part=2"}], 
    "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}

    代码2的explain dependency结果

    {"input_partitions": 
    [{"partitionName":"default@student_orc_partition@part=1"}, 
    {"partitionName" : "default@student_orc_partition@part=2"},
    {"partitionName" :"default@student_orc_partition_only@part=1"},
    {"partitionName":"default@student_orc_partition_only@part=2"}], 
    "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}

    通过上面的输出结果可以看到,其实上述的两个SQL并不等价,代码1在内连接(inner join)中的连接条件(on)中加入非等值的过滤条件后,并没有将内连接的左右两个表按照过滤条件进行过滤,内连接在执行时会多读取part=0的分区数据。而在代码2中,会过滤掉不符合条件的分区。

    案例二:识别SQL读取数据范围的差别

    代码1:

    explain dependency
    select
    a.s_no 
    from student_orc_partition a 
    left join 
    student_orc_partition_only b 
    on a.s_no=b.s_no and a.part=b.part and b.part>=1 and b.part<=2;

    代码2:

    explain dependency 
    select 
    a.s_no 
    from student_orc_partition a 
    left join 
    student_orc_partition_only b 
    on a.s_no=b.s_no and a.part=b.part and a.part>=1 and a.part<=2;

    以上两个代码的数据读取范围是一样的吗?答案是不一样,我们通过explain dependency来看下:

    代码1的explain dependency结果

    {"input_partitions": 
    [{"partitionName": "default@student_orc_partition@part=0"}, 
    {"partitionName":"default@student_orc_partition@part=1"}, …中间省略7个分区
    {"partitionName":"default@student_orc_partition@part=9"}, 
    {"partitionName":"default@student_orc_partition_only@part=1"}, 
    {"partitionName":"default@student_orc_partition_only@part=2"}], 
    "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}

    代码2的explain dependency结果

    {"input_partitions": 
    [{"partitionName":"default@student_orc_partition@part=0"}, 
    {"partitionName":"default@student_orc_partition@part=1"}, …中间省略7个分区 
    {"partitionName":"default@student_orc_partition@part=9"}, 
    {"partitionName":"default@student_orc_partition_only@part=0"}, 
    {"partitionName":"default@student_orc_partition_only@part=1"}, …中间省略7个分区 
    {"partitionName":"default@student_orc_partition_only@part=9"}],
    "input_tables": [{"tablename":"default@student_orc_partition","tabletype":"MANAGED_TABLE"}, {"tablename":"default@student_orc_partition_only","tabletype":"MANAGED_TABLE"}]}

    可以看到,对左外连接在连接条件中加入非等值过滤的条件,如果过滤条件是作用于右表(b表)有起到过滤的效果,则右表只要扫描两个分区即可,但是左表(a表)会进行全表扫描。如果过滤条件是针对左表,则完全没有起到过滤的作用,那么两个表将进行全表扫描。这时的情况就如同全外连接一样都需要对两个数据进行全表扫描。

    在使用过程中,容易认为代码片段2可以像代码片段1一样进行数据过滤,通过查看explain dependency的输出结果,可以知道不是如此。

    3. explain authorization 的用法

    通过explain authorization可以知道当前SQL访问的数据来源(INPUTS) 和数据输出(OUTPUTS),以及当前Hive的访问用户 (CURRENT_USER)和操作(OPERATION)。

    在 hive cli 中输入以下命令:

    explain authorization 
    select variance(s_score) from student_tb_orc;

    结果如下:

    INPUTS: 
      default@student_tb_orc 
    OUTPUTS: 
      hdfs://node01:8020/tmp/hive/hdfs/cbf182a5-8258-4157-9194- 90f1475a3ed5/-mr-10000 
    CURRENT_USER: 
      hdfs 
    OPERATION: 
      QUERY 
    AUTHORIZATION_FAILURES: 
      No privilege 'Select' found for inputs { database:default, table:student_ tb_orc, columnName:s_score}

    从上面的信息可知:

    上面案例的数据来源是defalut数据库中的 student_tb_orc表;

    数据的输出路径是hdfs://node01:8020/tmp/hive/hdfs/cbf182a5-8258-4157-9194-90f1475a3ed5/-mr-10000;

    当前的操作用户是hdfs,操作是查询;

    观察上面的信息我们还会看到AUTHORIZATION_FAILURES信息,提示对当前的输入没有查询权限,但如果运行上面的SQL的话也能够正常运行。为什么会出现这种情况?Hive在默认不配置权限管理的情况下不进行权限验证,所有的用户在Hive里面都是超级管理员,即使不对特定的用户进行赋权,也能够正常查询

    最后

    通过上面对explain的介绍,可以发现explain中有很多值得我们去研究的内容,读懂 explain 的执行计划有利于我们优化Hive SQL,同时也能提升我们对SQL的掌控力。

    本文来自博客园,作者:秋华,转载请注明原文链接:https://www.cnblogs.com/qiu-hua/p/15154881.html

  • 相关阅读:
    如何只通过Sandboxed Solution启动一个定时执行的操作
    创建与SharePoint 2010风格一致的下拉菜单 (续) 整合Feature Custom Action框架
    创建与SharePoint 2010风格一致的下拉菜单
    《SharePoint 2010 应用程序开发指南》第二章预览
    SharePoint 2013 App 开发 (1) 什么是SharePoint App?
    使用Jscex增强SharePoint 2010 JavaScript Client Object Model (JSOM)
    搜索范围的管理
    SharePoint 2010 服务应用程序(Service Application)架构(1)
    SharePoint 2010 服务应用程序(Service Application)架构(2)
    SharePoint 2013 App 开发 (2) 建立开发环境
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/15154881.html
Copyright © 2011-2022 走看看