zoukankan      html  css  js  c++  java
  • HDU3548 Enumerate the Triangles(优化)

    题 目 :

    Problem Description
    Little E is doing geometry works. After drawing a lot of points on a plane, he want to enumerate all the triangles which the vertexes are three of the points to find out the one with minimum perimeter. Your task is to implement his work.
     
    Input
    The input contains several test cases. The first line of input contains only one integer denoting the number of test cases.
    The first line of each test cases contains a single integer N, denoting the number of points. (3 <= N <= 1000)
    Next N lines, each line contains two integer X and Y, denoting the coordinates of a point. (0 <= X, Y <= 1000)
     
    Output
    For each test cases, output the minimum perimeter, if no triangles exist, output "No Solution".
     
    Sample Input
    2
    3
    0 0
    1 1
    2 2
    4
    0 0
    0 2
    2 1
    1 1
     
    Sample Output
     
    Case 1: No Solution
    Case 2: 4.650

    题意:

    平面上有n(n<=1000)点,问组成的三角形中,周长最小是多少。

    优化:

    周长c=L1+L2+L3,所以推得①c > 2Li,假设Li的端点为点a、b,则又有Li>=| Xa-Xb |,故②c > 2*| Xa-Xb |。

    只是用优化②即可

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<iostream>
     4 #include<algorithm>
     5 #include<cmath>
     6 using namespace std;
     7 #define INF 1001*1002
     8 struct point{
     9     int x, y;
    10 }p[1005];
    11 bool cmp(point a, point b){
    12     return a.x == b.x ? a.y < b.y : a.x < b.x;
    13 }
    14 double dis(int i, int j){
    15     return sqrt( 1.0*(p[i].x-p[j].x)*(p[i].x-p[j].x) + (p[i].y-p[j].y)*(p[i].y-p[j].y) );
    16 }
    17 int main()
    18 {
    19     int i, j, t, r, n;
    20     double IJ, IR, JR, C, minC;
    21     int cas = 1;
    22     cin>>t;
    23     while(t--)
    24     {
    25         cin>>n;
    26         for(i = 1; i <= n; i++)
    27             scanf("%d%d", &p[i].x, &p[i].y);
    28         C = minC = INF;
    29         sort(p+1, p+n+1, cmp);
    30         for(i = 1; i <= n; i++){
    31             for(j = i+1; j <= n; j++){
    32                 IJ  = dis(i, j);
    33                 /*周长c=L1+L2+L3,所以推得c > 2Li,假设Li的端点为点a、b,
    34                   则又有Li>=| Xa-Xb |,故c > 2*| Xa-Xb |*/
    35                 if(minC <= 2*(p[j].x-p[i].x))break;//优化②
    36                 if(minC <= 2*IJ)continue;//优化①
    37 
    38                 for(r = j+1; r <= n; r++){
    39                     if(minC <= 2*(p[r].x-p[j].x))break;//优化②
    40                     IR = dis(i, r);
    41                     JR = dis(j, r);
    42                     if(IJ + IR > JR && (fabs(IJ-IR) < JR))
    43                         C = IJ + IR + JR;
    44                     minC = min(C, minC);
    45                 }
    46             }
    47         }
    48         printf("Case %d: ", cas++);
    49         if(minC == INF)printf("No Solution
    ");
    50         else printf("%.3lf
    ", minC);
    51     }
    52     return 0;
    53 }
    View Code
  • 相关阅读:
    QT窗体程序设置成不可改变大小,并生成在Linux下可双击执行的程序文件
    QT新建一个窗口控制程序,以实现添加按钮点击弹出信息提示框为例
    C# 模拟Http请求、下载
    thingsboard改造使用mysql数据库
    Redis单机版分布式锁实现
    利用jvisualvm使用btrace进行线上调试案例
    Btrace官方教程-中文版
    Powerdesigner16 逆向 postgresql9.2
    Linux java进程无故被kill
    thingsboard填坑之路
  • 原文地址:https://www.cnblogs.com/qiu520/p/3663796.html
Copyright © 2011-2022 走看看