zoukankan      html  css  js  c++  java
  • 53. Maximum Subarray

    https://leetcode.com/problems/maximum-subarray/

    给定一个数组,找出加和最大的子数组

    this problem was discussed by Jon Bentley (Sep. 1984 Vol. 27 No. 9 Communications of the ACM P885)

    the paragraph below was copied from his paper (with a little modifications)

    algorithm that operates on arrays: it starts at the left end (element A[1]) and scans through to the right end (element A[n]), keeping track of the maximum sum subvector seen so far. The maximum is initially A[0]. Suppose we've solved the problem for A[1 .. i - 1]; how can we extend that to A[1 .. i]? The maximum
    sum in the first I elements is either the maximum sum in the first i - 1 elements (which we'll call MaxSoFar), or it is that of a subvector that ends in position i (which we'll call MaxEndingHere).

    MaxEndingHere is either A[i] plus the previous MaxEndingHere, or just A[i], whichever is larger.

    class Solution {
    public:
        int maxSubArray(vector<int>& nums) {
            int maxhere = nums[0];
            int maxsofar = nums[0];
            
            for(int i=1; i<nums.size(); ++i)
            {
                maxhere = (maxhere + nums[i]) > nums[i] ? (maxhere + nums[i]) : nums[i]; // 可以优化减少一次加法
                maxsofar = maxsofar > maxhere ? maxsofar:maxhere;
            }
            return maxsofar;
        }
    };
    

    结果:
    Runtime: 8 ms
    Memory Usage: 7.2 MB


    class Solution {
    public:
        int maxSubArray(vector<int>& nums) {
            int maxhere = nums[0];
            int maxsofar = nums[0];
            
            for(int i=1; i<nums.size(); ++i)
            {
                maxhere = maxhere > 0 ? (maxhere + nums[i]) : nums[i];
                maxsofar = maxsofar > maxhere ? maxsofar:maxhere;
            }
            return maxsofar;
        }
    };
    

    结果
    Runtime: 4 ms, faster than 98.08% of C++ online submissions for Maximum Subarray.
    Memory Usage: 7 MB, less than 100.00% of C++ online submissions for Maximum Subarray.

  • 相关阅读:
    webdriver 窗口切换
    element not visible 错误的原因和解决方式
    选择子数据,默认存储父数据 的校验方法
    What's jenkins And How to Install
    testng suite
    webdriver 选择下拉列表的操作
    webdriver 获取表格内的文案
    webdriver 定位表格元素
    webdriver 上传文件
    树上倍增求解LCA 模板
  • 原文地址:https://www.cnblogs.com/qiulinzhang/p/12628750.html
Copyright © 2011-2022 走看看