zoukankan      html  css  js  c++  java
  • Codeforces543 B. Destroying Roads

    传送门:>Here<

    题意:给出一张无向图(边权为1),并给出两对起点和终点以及距离:s1,t1,l1; s2,t2,l2; 要求删除尽量多的边,使得dis(s1,t1)<=l1, dis(s2,r2)<=l2

    解题思路

      首先我们会发现,由于边权都为1,删去一些边,某两点间的最短路肯定会随着删的边越来越多而越来越长(捷径被删了)

      因此我们会发现,要让边删的尽量多,最好最后只剩下最短路,其它边都剩下。换句话说,如果两条最短路不相交,那么最后只会剩下孤零零的两条链

      于是我们会发现,我们可以初步得到一个答案:$M - d(s1,t1) - d(s2,t2)$

      但这有可能不是最优的答案——两条最短路有可能有重叠。重叠的部分越长,答案就会越大也就是更优。并且很容易证明,重叠肯定只有连续的一段,而不会有间断的两断——因为如果需要有两断的话肯定不如连起来变为一段来的优。所以可以$O(n^2)$枚举重叠部分,验证一下就好了

    Code

      用SPFA预处理出任意两点间的距离,注意数组要开$N*N$

      教训:当出现莫名其妙的错误的时候,首先检查数组有没有开错——例如,int开成bool,开得太小等等

    /*By QiXingzhi*/
    #include <cstdio>
    #include <queue>
    #include <cstring>
    #include <algorithm>
    #define  r  read()
    #define  Max(a,b)  (((a)>(b)) ? (a) : (b))
    #define  Min(a,b)  (((a)<(b)) ? (a) : (b))
    using namespace std;
    typedef long long ll;
    const int MAXN = 3010;
    const int MAXM = 5000010;
    const int INF = 1061109567;
    inline int read(){
        int x = 0; int w = 1; register int c = getchar();
        while(c ^ '-' && (c < '0' || c > '9')) c = getchar();
        if(c == '-') w = -1, c = getchar();
        while(c >= '0' && c <= '9') x = (x << 3) +(x << 1) + c - '0', c = getchar(); return x * w;
    }
    int N,M,x,y,s1,t1,l1,s2,t2,l2,top,sp1;
    int first[MAXM*2],nxt[MAXM*2],to[MAXM*2],num_edge;
    int d[MAXN][MAXN],inQ[MAXN],pre[MAXN],ans[MAXN],tmp[MAXN];
    queue <int> q;
    inline void add(int u, int v){
        to[++num_edge] = v;
        nxt[num_edge] = first[u];
        first[u] = num_edge;
    }
    inline void SPFA(int s, int c){
        for(int i = 0; i <= N; ++i) d[i][c] = INF;
        memset(inQ, 0, sizeof(inQ));
        d[s][c] = 0;
        q.push(s);
        int u,v;
        while(!q.empty()){
            u = q.front();q.pop();
            inQ[u] = 0;
            for(int i = first[u]; i; i = nxt[i]){
                v = to[i];
                if(d[u][c] + 1 < d[v][c]){
                    d[v][c] = d[u][c] + 1;
                    if(!inQ[v]){
                        inQ[v] = 1;
                        q.push(v);
                    }
                }
            }
        }
    }
    int main(){
    //    freopen(".in","r",stdin);
        N=r,M=r;
        for(int i = 1; i <= M; ++i){
            x=r,y=r;
            add(x, y), add(y, x);
        }
        s1=r,t1=r,l1=r;
        s2=r,t2=r,l2=r;
        for(int i = 1; i <= N; ++i){
            SPFA(i, i);
        }
        if(d[s1][t1] > l1 || d[s2][t2] > l2){ printf("-1"); return 0; }
        int Ans = M - d[s1][t1] - d[s2][t2];
        if(Ans < 0) Ans = 0;
        for(int i = 1; i <= N; ++i){
            for(int j = 1; j <= N; ++j){
                if(i == j) continue;
                if(d[s1][i] + d[j][t1] + d[i][j] <= l1){
                    if(d[s2][i] + d[j][t2] + d[i][j] <= l2){
                        Ans = Max(Ans, M - (d[s1][i]+d[i][j]+d[j][t1]+d[s2][i]+d[j][t2]));
                    }
                    if(d[s2][j] + d[i][t2] + d[i][j] <= l2){
                        Ans = Max(Ans, M - (d[s1][i]+d[i][j]+d[j][t1]+d[s2][j]+d[i][t2]));
                    }
                }
                if(d[s1][j] + d[i][t1] + d[i][j] <= l1){
                    if(d[s2][i] + d[j][t2] + d[i][j] <= l2){
                        Ans = Max(Ans, M - (d[s1][j]+d[i][j]+d[i][t1]+d[s2][i]+d[j][t2]));
                    }
                    if(d[s2][j] + d[i][t2] + d[i][j] <= l2){
                        Ans = Max(Ans, M - (d[s1][j]+d[i][j]+d[i][t1]+d[s2][j]+d[i][t2]));
                    }
                }
            }
        }
        printf("%d", Ans);
        return 0;
    }
  • 相关阅读:
    input 去除边框
    分页封装
    python后端继承序列化,不同访问形式返回不同结果
    解决vue前端不显示自定义字段
    Vue 获取后端多对多关联表信息
    vue 前段增删改查代码规范
    前段增删改查的应用
    ant-design-vue基础
    python 后端 数据库的创表及增删改查 简单使用
    配置Uwsgi+Nginx+Django+Vue
  • 原文地址:https://www.cnblogs.com/qixingzhi/p/9405596.html
Copyright © 2011-2022 走看看