zoukankan      html  css  js  c++  java
  • 样本均值和样本方差的无偏性证明、样本方差的方差

    样本均值和样本方差

      首先对于样本$x_1...x_n$来说,他们的均值为与方差分别为:

      $displaystylear{x} = frac{1}{n}sumlimits_{i=1}^{n}x_i$

      $displaystyle s^2 = frac{sumlimits_{i=1}^{n} (x_i - ar{x})^2}{n-1}$

      要证明样本方差的无偏性,首先要计算样本均值的方差。

    样本均值的方差

      $displaystyle D(ar{x}) = D(frac{sumlimits_{i=1}^{n}x_i}{n}) = frac{1}{n^2}sumlimits_{i=1}^{n}D(x_i) = frac{1}{n^2}sumlimits_{i=1}^{n}sigma^2 = frac{sigma^2}{n}$

    样本均值和样本方差的无偏性证明

      $displaystyle E(ar{x}) = E(frac{1}{n}sumlimits_{i=1}^{n}x_i) = frac{1}{n}sumlimits_{i=1}^{n}E(x_i) = frac{1}{n}sumlimits_{i=1}^{n}mu = mu$

      $displaystyle E(s^2)$

      $displaystyle= E(frac{sumlimits_{i=1}^{n} (x_i - ar{x})^2}{n-1})$

      $displaystyle= frac{1}{n-1}sumlimits_{i=1}^{n}E(x_i^2 + ar{x}^2 - 2x_iar{x}) $

      $displaystyle= frac{1}{n-1}sumlimits_{i=1}^{n}[D(x) + E(x)^2 + D(ar{x}) + E(ar{x})^2 - 2E((x_i^2 + x_ix_1 + ... + x_ix_{i-1} + x_ix_{i+1} + ... + x_ix_n)/n)]$

      $displaystylexlongequal[]{E(x_ix_j) = E(x_i)E(x_j)} frac{1}{n-1}sumlimits_{i=1}^{n}[sigma^2 + mu^2 + sigma^2/n + mu^2 - 2(sigma^2 + mu^2 + (n-1)mu^2)/n]$

      $displaystyle=  frac{1}{n-1}sumlimits_{i=1}^{n}(frac{n - 1}{n}sigma^2)$

      $displaystyle= sigma^2$

    样本方差的方差

      如果总体$X sim N(mu, sigma^2)$,那它的样本方差有:

      $displaystylefrac{(n-1)s^2}{sigma^2} sim chi^2(n - 1)$.

      由于$chi^2$分布的方差为两倍的自由度,得:

      $displaystyle D(frac{(n-1)s^2}{sigma^2}) = 2(n - 1)$

      $displaystyle D(s^2) = frac{2sigma^4}{n - 1}$

  • 相关阅读:
    快速选择算法
    归并排序求逆序对
    学习记录:Dijstra最短路
    学习记录:拓扑排序
    学习记录:最小生成树
    学习记录:线段树
    STL:unqiue
    击中心头那些字
    javaWeb项目结构
    java注解
  • 原文地址:https://www.cnblogs.com/qizhou/p/12187970.html
Copyright © 2011-2022 走看看