zoukankan      html  css  js  c++  java
  • centos7.2下caffe的安装及编译

    1、前期准备

    安装依赖

    sudo yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel

    sudo yum install gflags-devel glog-devel lmdb-devel

    sudo yum atlas-devel cmake glibc-devel gcc-gfortran autoconf automake gcc gcc-c++ git libtool make  pkgconfig zlib-devel SDL* yasm* python-devel cmake* git ncurses* *freetype2 nasm nasm*

    安装Boost

    安装glog

    安装protobuf

    安装lmdb

    安装leveldb

    安装gflags

    安装hdf5

    ***切记,上述依赖需要安装到/usr/local下面的目录,否则编译时会提示找不到相关库文件。

    安装ffmpeg

    安装opencv

    安装cuda

    查看cuda版本:cat /usr/local/cuda/version.txt

    安装cudnn

    如果将来要采用python调用caffe的话,必须将numpy提前装好:

    pip install numpy
    pip install pandas 
    pip install ipython

    2、使用安Makefile.config装及编译caffe

    下载caffe并移动到想存放的路径:

    修改Makefile.config文件:

    进入caffe目录
    cp Makefile.config.example Makefile.config
    vim Makefile.config

    文件的修改需要根据自己的具体情况,下面是一个示例:

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    # USE_CUDNN := 1
    "CuDNN是NVIDIA专门针对Deep Learning框架设计的一套GPU计算加速库,用于实现高性能的并行计算,在有GPU并且安装CuDNN的情况下可以打开即将注释去掉。"
    
    # CPU-only switch (uncomment to build without GPU support).
    #CPU_ONLY := 1
    "表示是否用GPU,如果只有CPU这里要打开"
    
    # uncomment to disable IO dependencies and corresponding data layers
    USE_OPENCV := 1
    "因为要用到OpenCV库所以要打开,下面这两个选项表示是选择Caffe的数据管理第三方库,两者都不打开 Caffe默认用的是LMDB,这两者均是嵌入式数据库管理系统编程库。"
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #   You should not set this flag if you will be reading LMDBs with any
    #   possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    "当需要读取LMDB文件时可以取消注释,默认不打开。"
    
    # Uncomment if you're using OpenCV 3
    OPENCV_VERSION := 2.4.10
    "用pkg-config --modversion opencv命令查看opencv版本"
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    "linux系统默认使用g++编译器,OSX则是clang++。"
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    "CUDA的安装目录"
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
            -gencode arch=compute_20,code=sm_21 
            -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_50,code=compute_50
    "这些参数需要根据GPU的计算能力
    (http://blog.csdn.net/jiajunlee/article/details/52067962)来进行设置,6.0以下的版本不支持×_50的计算能力。"
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := open
    "如果用的是ATLAS计算库则赋值atlas,MKL计算库则用mkl赋值,OpenBlas则赋值open。"
    
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    BLAS_INCLUDE := /usr/local/OpenBlas/include
    BLAS_LIB := /usr/local/OpenBlas/lib
    "blas库安装目录"
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    "如果不是安装在标准路径则要指明"
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    "matlab安装库的目录"
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    # 这里特别要注意,使用python -c "import numpy; print numpy.__file__"查看numpy的路径
    PYTHON_INCLUDE := /usr/include/python2.7 
            /usr/lib64/python2.7/site-packages/numpy/core/include
    #		/usr/lib/python2.7/dist-packages/numpy/core/include
    "python安装目录"
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
            # $(ANACONDA_HOME)/include/python2.7 
            # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include 
    
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m 
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib
    <font color="green">python库位置</font>
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    "所用的GPU的ID编号"
    
    # enable pretty build (comment to see full commands)
    Q ?= @

    编译:

    make clean #如果是第一次编译,则不需要执行这一步骤
    make all -j16 #-j16表示开16个线程并行编译,可以大大减少编译时间,但是线程数不要超过cpu核数
    make test -j16
    make runtest 

    编译pycaffe:

    #编译
    make pycaffe -j16
    #添加环境变量
    vim ~/.bashrc
    将export PYTHONPATH=/home/wanghh/caffe/python:$PYTHONPATH添加到文件中。 
    source ~/.bashrc 使更改生效。 
    这样,在其他地方打开python,也可以import caffe了。

    3、使用cmake安装及编译caffe

    (1)进入caffe根目录:cd xxx/xxx/caffe

    (2)创建build文件夹并配置

    mkdir build
    cd build
    cmake .. 

    cmake ..如果报错,则使用cmake -D xxx=xxxxxx ..来修改参数(例如:cmake -D BLAS=open ..)

    (3)编译

    make -j32 # -j后面为cpu核数,可小于或等于实际cpu核数
    

    4、测试 

    进入caffe目录
    sh data/mnist/get_mnist.sh
    sh examples/mnist/create_mnist.sh
    sh examples/mnist/train_lenet.sh

    出现下图所示结果:

    至此,caffe安装成功

    5、可能出现的问题

    python/caffe/_caffe.cpp:10:31: fatal error: numpy/arrayobject.h: No such file or directory(make pycaffe -j16 时)

    原因:numpy路径设置错误。

    解决方案:使用python -c "import numpy; print numpy.__file__"查看numpy的路径,修改Makefile.config,如示例:

    PYTHON_INCLUDE := /usr/include/python2.7 
            /usr/lib64/python2.7/site-packages/numpy/core/include
    #		/usr/lib/python2.7/dist-packages/numpy/core/include

    ./build/tools/caffe: error while loading shared libraries: libcudart.so.8.0: cannot open shared object file: No such file or directory(./examples/mnist/train_lenet.sh时)

    原因:

    解决方案:

    sudo cp /usr/local/cuda-8.0/lib64/libcudart.so.8.0 /usr/local/lib/libcudart.so.8.0 && sudo ldconfig 
    sudo cp /usr/local/cuda-8.0/lib64/libcublas.so.8.0 /usr/local/lib/libcublas.so.8.0 && sudo ldconfig 
    sudo cp /usr/local/cuda-8.0/lib64/libcurand.so.8.0 /usr/local/lib/libcurand.so.8.0 && sudo ldconfig

    make -j24时

    /usr/bin/ld: /usr/local/lib/libpython2.7.a(object.o): relocation R_X86_64_32 against `.rodata.str1.1' can not be used when making a shared object; recompile with -fPIC

    或:

    /usr/bin/ld: /usr/local/lib/libpython2.7.a(abstract.o): relocation R_X86_64_32S against `_Py_NotImplementedStruct' can not be used when making a shared object; recompile with -fPIC

    /usr/local/lib/libpython2.7.a: could not read symbols: Bad value

    原因:

    解决方案:

    make all -j16时:

    error -- unsupported GNU version! gcc versions later than 5 are not supported!

    原因:

    解决方案:

  • 相关阅读:
    汇编讲解(上)--逆向开发
    两数之和 II
    解析器模式--设计模式
    访问者模式--设计模式
    命令模式--设计模式
    ccf-201512-2 消除类游戏
    ccf-201503-2 数字排序
    移动端兼容和适配问题
    ccf-201409-2 画图
    ccf-201409-3 字符串匹配
  • 原文地址:https://www.cnblogs.com/qjoanven/p/7813957.html
Copyright © 2011-2022 走看看