zoukankan      html  css  js  c++  java
  • D. Relatively Prime Graph

    Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)E(v,u)∈E  GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.

    Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.

    If there exists no valid graph with the given number of vertices and edges then output "Impossible".

    If there are multiple answers then print any of them.

    Input

    The only line contains two integers nn and mm (1n,m1051≤n,m≤105) — the number of vertices and the number of edges.

    Output

    If there exists no valid graph with the given number of vertices and edges then output "Impossible".

    Otherwise print the answer in the following format:

    The first line should contain the word "Possible".

    The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1vi,uin,viui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.

    If there are multiple answers then print any of them.

    Examples
    input
    Copy
    5 6
    output
    Copy
    Possible
    2 5
    3 2
    5 1
    3 4
    4 1
    5 4
    input
    Copy
    6 12
    output
    Copy
    Impossible
    Note

    Here is the representation of the graph from the first example:

       这题无脑暴力 暴力真的出了奇迹 

       暴力枚举一遍就行了

        

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 const int INF = 0x3fffffff;
     5 typedef long long LL;
     6 using namespace std;
     7 int n, m;
     8 struct node {
     9     int x, y;
    10     node () {}
    11     node (int x, int y): x(x), y(y) {}
    12 } qu[maxn];
    13 int main() {
    14     scanf("%d%d", &n, &m);
    15     if (n - 1 > m) {
    16         printf("Impossible
    ");
    17         return 0;
    18     }
    19     int k = 0, flag = 0;
    20     for (int i = 1 ; i <= n ; i++) {
    21         for (int j = i + 1 ; j <= n ; j++) {
    22             if (__gcd(i, j) == 1) qu[k++] = node(i, j);
    23             if (k == m) {
    24                 flag = 1;
    25                 break;
    26             }
    27         }
    28         if (flag) break;
    29     }
    30     if (flag) {
    31         printf("Possible
    ");
    32         for (int i = 0 ; i < k ; i++)
    33             printf("%d %d
    ", qu[i].x, qu[i].y);
    34     } else  printf("Impossible
    ");
    35     return 0;
    36 }
  • 相关阅读:
    高性能SQL编码规范
    识别SQL Server 性能杀手
    centOS7安装nginx
    linux安装apache
    算术表达式的前缀表达式,中缀表达式和后缀表达式
    有特殊字符的JSON串
    sqlserver 找到执行慢的sql
    SQL索引建立遵守六大铁律
    [SQL Server 2005/2008] select语句中指定索引
    ubuntu下vsftpd虚拟用户配置
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9314221.html
Copyright © 2011-2022 走看看