zoukankan      html  css  js  c++  java
  • D. Relatively Prime Graph

    Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)E(v,u)∈E  GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.

    Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.

    If there exists no valid graph with the given number of vertices and edges then output "Impossible".

    If there are multiple answers then print any of them.

    Input

    The only line contains two integers nn and mm (1n,m1051≤n,m≤105) — the number of vertices and the number of edges.

    Output

    If there exists no valid graph with the given number of vertices and edges then output "Impossible".

    Otherwise print the answer in the following format:

    The first line should contain the word "Possible".

    The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1vi,uin,viui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.

    If there are multiple answers then print any of them.

    Examples
    input
    Copy
    5 6
    output
    Copy
    Possible
    2 5
    3 2
    5 1
    3 4
    4 1
    5 4
    input
    Copy
    6 12
    output
    Copy
    Impossible
    Note

    Here is the representation of the graph from the first example:

       这题无脑暴力 暴力真的出了奇迹 

       暴力枚举一遍就行了

        

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 const int INF = 0x3fffffff;
     5 typedef long long LL;
     6 using namespace std;
     7 int n, m;
     8 struct node {
     9     int x, y;
    10     node () {}
    11     node (int x, int y): x(x), y(y) {}
    12 } qu[maxn];
    13 int main() {
    14     scanf("%d%d", &n, &m);
    15     if (n - 1 > m) {
    16         printf("Impossible
    ");
    17         return 0;
    18     }
    19     int k = 0, flag = 0;
    20     for (int i = 1 ; i <= n ; i++) {
    21         for (int j = i + 1 ; j <= n ; j++) {
    22             if (__gcd(i, j) == 1) qu[k++] = node(i, j);
    23             if (k == m) {
    24                 flag = 1;
    25                 break;
    26             }
    27         }
    28         if (flag) break;
    29     }
    30     if (flag) {
    31         printf("Possible
    ");
    32         for (int i = 0 ; i < k ; i++)
    33             printf("%d %d
    ", qu[i].x, qu[i].y);
    34     } else  printf("Impossible
    ");
    35     return 0;
    36 }
  • 相关阅读:
    文件管理系统(JQuery插件+Ajax)
    十大Ajax框架
    WSS3.0开发你还在为写CAML痛苦吗?
    vue获取微博授权的URL
    微博三方登录原理
    阿里云短信服务
    JWT原理和COOKIE原理
    django数据库的ORM操作
    celery原理与组件
    生成微博授权URL
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9314221.html
Copyright © 2011-2022 走看看