zoukankan      html  css  js  c++  java
  • D. Relatively Prime Graph

    Let's call an undirected graph G=(V,E)G=(V,E) relatively prime if and only if for each edge (v,u)E(v,u)∈E  GCD(v,u)=1GCD(v,u)=1 (the greatest common divisor of vv and uu is 11). If there is no edge between some pair of vertices vv and uu then the value of GCD(v,u)GCD(v,u) doesn't matter. The vertices are numbered from 11 to |V||V|.

    Construct a relatively prime graph with nn vertices and mm edges such that it is connected and it contains neither self-loops nor multiple edges.

    If there exists no valid graph with the given number of vertices and edges then output "Impossible".

    If there are multiple answers then print any of them.

    Input

    The only line contains two integers nn and mm (1n,m1051≤n,m≤105) — the number of vertices and the number of edges.

    Output

    If there exists no valid graph with the given number of vertices and edges then output "Impossible".

    Otherwise print the answer in the following format:

    The first line should contain the word "Possible".

    The ii-th of the next mm lines should contain the ii-th edge (vi,ui)(vi,ui) of the resulting graph (1vi,uin,viui1≤vi,ui≤n,vi≠ui). For each pair (v,u)(v,u)there can be no more pairs (v,u)(v,u) or (u,v)(u,v). The vertices are numbered from 11 to nn.

    If there are multiple answers then print any of them.

    Examples
    input
    Copy
    5 6
    output
    Copy
    Possible
    2 5
    3 2
    5 1
    3 4
    4 1
    5 4
    input
    Copy
    6 12
    output
    Copy
    Impossible
    Note

    Here is the representation of the graph from the first example:

       这题无脑暴力 暴力真的出了奇迹 

       暴力枚举一遍就行了

        

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 1e5 + 10;
     4 const int INF = 0x3fffffff;
     5 typedef long long LL;
     6 using namespace std;
     7 int n, m;
     8 struct node {
     9     int x, y;
    10     node () {}
    11     node (int x, int y): x(x), y(y) {}
    12 } qu[maxn];
    13 int main() {
    14     scanf("%d%d", &n, &m);
    15     if (n - 1 > m) {
    16         printf("Impossible
    ");
    17         return 0;
    18     }
    19     int k = 0, flag = 0;
    20     for (int i = 1 ; i <= n ; i++) {
    21         for (int j = i + 1 ; j <= n ; j++) {
    22             if (__gcd(i, j) == 1) qu[k++] = node(i, j);
    23             if (k == m) {
    24                 flag = 1;
    25                 break;
    26             }
    27         }
    28         if (flag) break;
    29     }
    30     if (flag) {
    31         printf("Possible
    ");
    32         for (int i = 0 ; i < k ; i++)
    33             printf("%d %d
    ", qu[i].x, qu[i].y);
    34     } else  printf("Impossible
    ");
    35     return 0;
    36 }
  • 相关阅读:
    Windows DLL调用实例
    DLL头文件的格式和应用
    Strategy factory
    抽象数据类型(ADT)和面向对象编程(OOP)3.5 ADT和OOP中的等价性
    抽象数据类型(ADT)和面向对象编程(OOP)3.4 面向对象的编程
    抽象数据类型(ADT)和面向对象编程(OOP)3.3 抽象数据类型
    抽象数据类型(ADT)和面向对象编程(OOP)3.2规约
    抽象数据类型(ADT)和面向对象编程(OOP)3.1数据类型和类型检查
    软件构造 消息传递
    软件构造 并发3(线程安全性)----锁定和同步
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9314221.html
Copyright © 2011-2022 走看看