zoukankan      html  css  js  c++  java
  • HDU

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him? 

    Your program should find the minimum number of soldiers that Bob has to put for a given tree. 

    For example for the tree: 

    the solution is one soldier ( at the node 1).

    Input

    The input contains several data sets in text format. Each data set represents a tree with the following description: 

    • the number of nodes 
    • the description of each node in the following format 
      node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifiernumber_of_roads 
      or 
      node_identifier:(0) 

    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500);the number_of_roads in each line of input will no more than 10. Every edge appears only once in the input data.

    Output

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following:

    Sample Input

    4
    0:(1) 1
    1:(2) 2 3
    2:(0)
    3:(0)
    5
    3:(3) 1 4 2
    1:(1) 0
    2:(0)
    0:(0)
    4:(0)

    Sample Output

    1
    2
     1 #include <cstdio>
     2 #include <algorithm>
     3 #include <cstring>
     4 using namespace std;
     5 const int maxn = 1e5 + 10;
     6 const int INF = 0x7fffffff;
     7 int n, dp[maxn][2], head[maxn], tot;
     8 struct node {
     9     int v, next;
    10 } edge[maxn];
    11 void init() {
    12     tot = 0;
    13     memset(head, -1, sizeof(head));
    14 }
    15 void add(int u, int v) {
    16     edge[tot].v = v;
    17     edge[tot].next = head[u];
    18     head[u] = tot++;
    19     edge[tot].v = u;
    20     edge[tot].next = head[v];
    21     head[v] = tot++;
    22 }
    23 void solve(int x, int fa) {
    24     dp[x][0] = 0;
    25     dp[x][1] = 1;
    26     for (int i = head[x] ; i != -1 ; i = edge[i].next) {
    27         int v = edge[i].v;
    28         if (v == fa) continue;
    29         solve(v, x);
    30         dp[x][1] += min(dp[v][0], dp[v][1]);
    31         dp[x][0] += dp[v][1];
    32     }
    33 }
    34 int main() {
    35     while(scanf("%d", &n) != EOF) {
    36         init();
    37         int x, y, z;
    38         for (int i = 0 ; i < n ; i++) {
    39             scanf("%d:(%d)", &x, &y);
    40             while(y--) {
    41                 scanf("%d", &z);
    42                 add(x, z);
    43             }
    44         }
    45         solve(0, -1);
    46         printf("%d
    ", min(dp[0][0], dp[0][1]));
    47     }
    48     return 0;
    49 }
  • 相关阅读:
    Tensorflow基础教程11:常用模块 tf.data :数据集的构建与预处理
    Tensorflow基础教程10:常用模块 TensorBoard:训练过程可视化
    Tensorflow基础教程9:常用模块 tf.train.Checkpoint 之变量的保存与恢复
    Tensorflow基础教程8:自定义层、损失函数和评估指标
    OC原理之多线程中的锁(一)
    OC原理之多线程(二)
    OC原理之多线程(一)
    OC原理之RunLoop的运行逻辑
    OC原理RunLoop(一)
    前端模块化:CommonJS,AMD,CMD,ES6
  • 原文地址:https://www.cnblogs.com/qldabiaoge/p/9345708.html
Copyright © 2011-2022 走看看