zoukankan      html  css  js  c++  java
  • 任务5 图像的读取及表示 图像的特征 图片特征的降维

    任务目的:

      知道图像的表示以及读取方法

      了解图像的特征

      对图像特征进行降维

    一、图像的读取及表示

      图像要进行处理才能进行模型输入。

      python自带的库将图像存在矩阵或者张量里面。

      图像由像素组成,一个像素点一般油RGB三维数组构成。

    二、图像的特征

      图像的识别should环境因素约束。

      常见的图像颜色特征有:SIFT尺度不变特征变换 和 HOG方向梯度直方图

      颜色特征就是对RGB做一个统计,统计有各颜色的分布百分比。

      前者具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角依然能够很好地识别。

      后者通过计算和统计图像局部区域的梯度方向直方图来构建特征。

      两者的详细说明参照:https://blog.csdn.net/taigw/article/details/42206311

                https://blog.csdn.net/zouxy09/article/details/7929348

    三、对图片特征的降维

      种常用的降维工具——PCA(Principal Component Analysis), 它是一种无监督的学习方法,可以把高维的向量映射到低维的空间里。

      核心思路:对数据做线性的变换,然后在空间里选择信息量最大的Top K维度作为新的特征值。

      具体目标:将原来n为的数据映射到k维上,这k维又叫做主成分。具体映射方法的选择要和原始数据密切相关。

      从数据上来说就是原来的特征矩阵是N*M的,要求左乘或者右乘一个系数矩阵,使得原来矩阵的行数或者列数达到改变,那个系数矩阵怎么构造就是这个算法的关键。

      参考:https://blog.csdn.net/program_developer/article/details/80632779(主成分分析)

       

    总结:

      这个任务学得太抽象了,没有学到底层,只学了很多概念。

      之后再完善此博客,任务是了解SIFT和HOG的底层和PCA的底层,也就是看那几篇博客(●'◡'●)。

     

     

      

          

  • 相关阅读:
    《std测试》
    《关于cmp返回值的理解》
    《武汉大学2020年新生程序设计竞赛》
    《多校打卡 * 2018 Multi-University Training Contest 1》
    《牛客练习赛28-B》
    python使用sqlite示例
    python 使用mysql示例
    使用virtualenv为应用提供了隔离的Python运行环境
    生成字母验证码图片
    模拟微博登录
  • 原文地址:https://www.cnblogs.com/qq2210446939/p/12206565.html
Copyright © 2011-2022 走看看