zoukankan      html  css  js  c++  java
  • LightOJ 1282 Leading and Trailing (快数幂 + 数学)

    http://lightoj.com/volume_showproblem.php?problem=1282

    Leading and Trailing
    Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

    Description

    You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk.

    Input

    Input starts with an integer T (≤ 1000), denoting the number of test cases.

    Each case starts with a line containing two integers: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107).

    Output

    For each case, print the case number and the three leading digits (most significant) and three trailing digits (least significant). You can assume that the input is given such that nk contains at least six digits.

    Sample Input

    5

    123456 1

    123456 2

    2 31

    2 32

    29 8751919

    Sample Output

    Case 1: 123 456

    Case 2: 152 936

    Case 3: 214 648

    Case 4: 429 296

    Case 5: 665 669

    题目大意:给两个数n、k,让求n^k的前三位和后三位

    分析:

    后三位直接用快数幂取余可以求出

    前三位我们可以将n^k转化成a.bc * 10^m,这样abc就是前三位了,n^k =  a.bc * 10^m

    即lg(n^k) = lg(a.bc * 10^m)

    <==>k * lg(n) = lg(a.bc) + lg(10^m) = lg(a.bc) + m

    m为k * lg(n)的整数部分,lg(a.bc)为k * lg(n)的小数部分

    x = lg(a.bc) = k * lg(n) - m = k * lg(n) - (int)(k * lg(n))

    a.bc = pow(10, x);

    abc = a.bc * 100;

    这样前三位数abc便可以求出

    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<stdlib.h>
    #include<algorithm>
    
    using namespace std;
    typedef long long ll;
    
    int Pow(int a, int b)
    {
        int ans = 1;
        a %= 1000;
        while(b)
        {
            if(b % 2 != 0)
                ans = (ans * a) % 1000;
            a = (a * a) % 1000;
            b /= 2;
        }
        return ans;
    }//快数幂
    
    int main()
    {
        int t, n, k, p = 0;
        scanf("%d", &t);
        while(t--)
        {
            p++;
            scanf("%d%d", &n, &k);
            double m = k * log10(n) - (int)(k * log10(n));
            m = pow(10, m);
            int x = m * 100;
            int y = Pow(n, k);
            printf("Case %d: %d %03d
    ", p, x, y);
        }
        return 0;
    }
  • 相关阅读:
    IE, FireFox, Opera 浏览器支持CSS实现Alpha半透明的方法
    5个CSS3技术实现设计增强
    SQL Server 2005 中的分区表和索引
    推荐12款可用于前端开发的免费文本编辑器
    960 Grid System
    初识Byte
    在线制作网站
    sqlserver操作符篇 优化
    ASP.NET 异常处理
    Photoshop 隐藏的快捷键
  • 原文地址:https://www.cnblogs.com/qq2424260747/p/4932958.html
Copyright © 2011-2022 走看看