zoukankan      html  css  js  c++  java
  • 使用face-api.js实现人脸识别(一)

    功能

      第一阶段实现对图片中人脸的识别并打上标签(比如:人名)

      第二阶段使用摄像头实现对人物的识别,比如典型的应用做一个人脸考勤的系统

    资源

      Face-api.js 是一个 JavaScript API,是基于 tensorflow.js 核心 API 的人脸检测和人脸识别的浏览器实现。它实现了一系列的卷积神经网络(CNN),针对网络和移动设备进行了优化。非常牛逼,简单好用

      是一个 JavaScript 文件上传库。可以拖入上传文件,并且会对图像进行优化以加快上传速度。让用户体验到出色、进度可见、如丝般顺畅的用户体验。确实很酷的一款上传图片的开源产品

      是一个 JavaScript 库,它以优雅的方式展示图片,视频和一些 html 内容。它包含你所期望的一切特性 —— 支持触屏,响应式和高度自定义

    设计思路

    1. 准备一个人脸数据库,上传照片,并打上标签(人名),最好但是单张脸的照片,测试的时候可以同时对一张照片上的多个人物进行识别
    2. 提取人脸数据库中的照片和标签进行量化处理,转化成一堆数字,这样就可以进行比较匹配
    3. 使用一张照片来测试一下匹配程度

    最终的效果

    Demo  http://221.224.21.30:2020/FaceLibs/Index   密码:123456

     注意:红框中的火箭浣熊,钢铁侠,战争机器没有正确的识别,虽然可以通过调整一些参数可以识别出来,但还是其它的问题,应该是训练的模型中缺少对带面具的和动漫人物的人脸数据。

    实现过程

    还是先来 看看代码吧,做这类开发,并没有想象中的那么难,因为难的核心别人都已经帮你实现了,所以和普通的程序开发没有什么不同,熟练掌握这些api的方法和功能就可以做出非常实用并且非常酷炫的产品。

    1、准备素材

      下载每个人物的图片进行分类

    2、上传服务器数据库

    3、测试

     代码解析

      这里对face-api.js类库代码做一下简单的说明

    www.wityx.com
    function dodetectpic() {
          $.messager.progress();
          //加载训练好的模型(weight,bias)
          Promise.all([
            faceapi.nets.faceRecognitionNet.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.faceLandmark68Net.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.faceLandmark68TinyNet.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.ssdMobilenetv1.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.tinyFaceDetector.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.mtcnn.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            //faceapi.nets.tinyYolov.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights')
          ]).then(async () => {
            //在原来图片容器中添加一层用于显示识别的蓝色框框
            const container = document.createElement('div')
            container.style.position = 'relative'
            $('#picmodal').prepend(container)
            //先加载维护好的人脸数据(人脸的特征数据和标签,用于后面的比对)
            const labeledFaceDescriptors = await loadLabeledImages()
            //比对人脸特征数据
            const faceMatcher = new faceapi.FaceMatcher(labeledFaceDescriptors, 0.6)
            //获取输入图片
            let image = document.getElementById('testpic')
            //根据图片大小创建一个图层,用于显示方框
            let canvas = faceapi.createCanvasFromMedia(image)
            //console.log(canvas);
            container.prepend(canvas)
            const displaySize = {  image.width, height: image.height }
            faceapi.matchDimensions(canvas, displaySize)
            //设置需要使用什么算法和参数进行扫描识别图片的人脸特征
            const options = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.38 })
            //const options = new faceapi.TinyFaceDetectorOptions()
            //const options = new faceapi.MtcnnOptions()
            //开始获取图片中每一张人脸的特征数据
            const detections = await faceapi.detectAllFaces(image, options).withFaceLandmarks().withFaceDescriptors()
            //根据人脸轮廓的大小,调整方框的大小
            const resizedDetections = faceapi.resizeResults(detections, displaySize)
            //开始和事先准备的标签库比对,找出最符合的那个标签
            const results = resizedDetections.map(d => faceMatcher.findBestMatch(d.descriptor))
            console.log(results)
            results.forEach((result, i) => {
              //显示比对的结果
              const box = resizedDetections[i].detection.box
              const drawBox = new faceapi.draw.DrawBox(box, { label: result.toString() })
              drawBox.draw(canvas)
              console.log(box, drawBox)
            })
            $.messager.progress('close');
    
          })
    
        }
    //读取人脸标签数据
        async function loadLabeledImages() {
          //获取人脸图片数据,包含:图片+标签
          const data = await $.get('/FaceLibs/GetImgData');
          //对图片按标签进行分类
          const labels = [...new Set(data.map(item => item.Label))]
          console.log(labels);
          return Promise.all(
            labels.map(async label => {
              const descriptions = []
              const imgs = data.filter(item => item.Label == label);
              for (let i = 0; i < imgs.length; i++) {
                const item = imgs[i];
                const img = await faceapi.fetchImage(`${item.ImgUrl}`)
                //console.log(item.ImgUrl, img);
                //const detections = await faceapi.detectSingleFace(img).withFaceLandmarks().withFaceDescriptor()
                //识别人脸的初始化参数
                const options = new faceapi.SsdMobilenetv1Options({ minConfidence:0.38})
                //const options = new faceapi.TinyFaceDetectorOptions()
                //const options = new faceapi.MtcnnOptions()
                //扫描图片中人脸的轮廓数据
                const detections = await faceapi.detectSingleFace(img, options).withFaceLandmarks().withFaceDescriptor()
                console.log(detections);
                if (detections) {
                  descriptions.push(detections.descriptor)
                } else {
                  console.warn('Unrecognizable face')
                }
              }
              console.log(label, descriptions);
              return new faceapi.LabeledFaceDescriptors(label, descriptions)
            })
          )
    
        }
    face-api.js

    face-api 类库介绍

      face-api 有几个非常重要的方法下面说明一下都是来自 https://github.com/justadudewhohacks/face-api.js/ 的介绍

      在使用这些方法前必须先加载训练好的模型,这里并不需要自己照片进行训练了,face-api.js应该是在tensorflow.js上改的所以这些训练好的模型应该和python版的tensorflow都是通用的,所有可用的模型都在https://github.com/justadudewhohacks/face-api.js/tree/master/weights 可以找到

    //加载训练好的模型(weight,bias)
    // ageGenderNet 识别性别和年龄
    // faceExpressionNet 识别表情,开心,沮丧,普通
    // faceLandmark68Net 识别脸部特征用于mobilenet算法
    // faceLandmark68TinyNet 识别脸部特征用于tiny算法
    // faceRecognitionNet 识别人脸
    // ssdMobilenetv1 google开源AI算法除库包含分类和线性回归
    // tinyFaceDetector 比Google的mobilenet更轻量级,速度更快一点
    // mtcnn  多任务CNN算法,一开浏览器就卡死
    // tinyYolov2 识别身体轮廓的算法,不知道怎么用
          Promise.all([
            faceapi.nets.faceRecognitionNet.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.faceLandmark68Net.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.faceLandmark68TinyNet.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.ssdMobilenetv1.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.tinyFaceDetector.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            faceapi.nets.mtcnn.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights'),
            //faceapi.nets.tinyYolov.loadFromUri('https://raw.githubusercontent.com/justadudewhohacks/face-api.js/master/weights')
          ]).then(async () => {})

      非常重要参数设置,在优化识别性能和比对的正确性上很有帮助,就是需要慢慢的微调。

    SsdMobilenetv1Options
    export interface ISsdMobilenetv1Options {
      // minimum confidence threshold
      // default: 0.5
      minConfidence?: number
    
      // maximum number of faces to return
      // default: 100
      maxResults?: number
    }
    
    // example
    const options = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.8 })
    TinyFaceDetectorOptions
    export interface ITinyFaceDetectorOptions {
      // size at which image is processed, the smaller the faster,
      // but less precise in detecting smaller faces, must be divisible
      // by 32, common sizes are 128, 160, 224, 320, 416, 512, 608,
      // for face tracking via webcam I would recommend using smaller sizes,
      // e.g. 128, 160, for detecting smaller faces use larger sizes, e.g. 512, 608
      // default: 416
      inputSize?: number
    
      // minimum confidence threshold
      // default: 0.5
      scoreThreshold?: number
    }
    
    // example
    const options = new faceapi.TinyFaceDetectorOptions({ inputSize: 320 })
    MtcnnOptions
    export interface IMtcnnOptions {
      // minimum face size to expect, the higher the faster processing will be,
      // but smaller faces won't be detected
      // default: 20
      minFaceSize?: number
    
      // the score threshold values used to filter the bounding
      // boxes of stage 1, 2 and 3
      // default: [0.6, 0.7, 0.7]
      scoreThresholds?: number[]
    
      // scale factor used to calculate the scale steps of the image
      // pyramid used in stage 1
      // default: 0.709
      scaleFactor?: number
    
      // number of scaled versions of the input image passed through the CNN
      // of the first stage, lower numbers will result in lower inference time,
      // but will also be less accurate
      // default: 10
      maxNumScales?: number
    
      // instead of specifying scaleFactor and maxNumScales you can also
      // set the scaleSteps manually
      scaleSteps?: number[]
    }
    
    // example
    const options = new faceapi.MtcnnOptions({ minFaceSize: 100, scaleFactor: 0.8 })

      最常用的图片识别方法,想要识别什么就调用相应的方法就好了

    // all faces
    await faceapi.detectAllFaces(input)
    await faceapi.detectAllFaces(input).withFaceExpressions()
    await faceapi.detectAllFaces(input).withFaceLandmarks()
    await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceExpressions()
    await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceExpressions().withFaceDescriptors()
    await faceapi.detectAllFaces(input).withFaceLandmarks().withAgeAndGender().withFaceDescriptors()
    await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceExpressions().withAgeAndGender().withFaceDescriptors()
    
    // single face
    await faceapi.detectSingleFace(input)
    await faceapi.detectSingleFace(input).withFaceExpressions()
    await faceapi.detectSingleFace(input).withFaceLandmarks()
    await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceExpressions()
    await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceExpressions().withFaceDescriptor()
    await faceapi.detectSingleFace(input).withFaceLandmarks().withAgeAndGender().withFaceDescriptor()
    await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceExpressions().withAgeAndGender().withFaceDescriptor()

    学习AI资源

      ml5js.org https://ml5js.org/ 这里有很多封装好的详细的例子,非常好。

    接下来我准备第二部分功能,通过摄像头快速识别人脸,做一个人脸考勤的应用。应该剩下的工作也不多了,只要接上摄像头就可以了

  • 相关阅读:
    浏览器内置对象及其方法
    Leetcode | Path Sum I && II
    Leetcode | 3Sum
    算法分析之渐近符号
    Leetcode | Two Sum
    Leetcode | Wildcard Matching
    LeetCode | Regular Expression Matching
    Leetcode | Subsets I & II
    Leetcode | Populating Next Right Pointers in Each Node I & II
    爱是恒久忍耐,又有恩慈
  • 原文地址:https://www.cnblogs.com/qq575654643/p/11772208.html
Copyright © 2011-2022 走看看