zoukankan      html  css  js  c++  java
  • yaha分词

    # -*- coding=utf-8 -*-
    import sys, re, codecs
    import cProfile
    from yaha import Cuttor, RegexCutting, SurnameCutting, SurnameCutting2, SuffixCutting
    from yaha.wordmaker import WordDict
    from yaha.analyse import extract_keywords, near_duplicate, summarize1, summarize2, summarize3

    str = '唐成真是唐成牛的长寿乡是个1998love唐成真诺维斯基'
    cuttor = Cuttor()

    # Get 3 shortest paths for choise_best
    #cuttor.set_topk(3)

    # Use stage 1 to cut english and number
    cuttor.set_stage1_regex(re.compile('(d+)|([a-zA-Z]+)', re.I|re.U))

    # Or use stage 2 to cut english and number
    #cuttor.add_stage(RegexCutting(re.compile('d+', re.I|re.U)))
    #cuttor.add_stage(RegexCutting(re.compile('[a-zA-Z]+', re.I|re.U)))

    # Use stage 3 to cut chinese name
    #surname = SurnameCutting()
    #cuttor.add_stage(surname)

    # Or use stage 4 to cut chinese name
    surname = SurnameCutting2()
    cuttor.add_stage(surname)

    # Use stage 4 to cut chinese address or english name
    suffix = SuffixCutting()
    cuttor.add_stage(suffix)

    #seglist = cuttor.cut(str)
    #print ' Cut with name %s ' % ','.join(list(seglist))

    #seglist = cuttor.cut_topk(str, 3)
    #for seg in seglist:
    # print ','.join(seg)

    #for s in cuttor.cut_to_sentence(str):
    # print s

    #str = "伟大祖国是中华人民共和国"
    #str = "九孔不好看来"
    #str = "而迈入社会后..."
    str = "工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作"

    #You can set WORD_MAX to 8 for better match
    #cuttor.WORD_MAX = 8

    #Normal cut
    seglist = cuttor.cut(str)
    print 'Normal cut %s ' % ','.join(list(seglist))

    #All cut
    seglist = cuttor.cut_all(str)
    print 'All cut %s ' % ','.join(list(seglist))

    #Tokenize for search
    print 'Cut for search (term,start,end)'
    for term, start, end in cuttor.tokenize(str.decode('utf-8'), search=True):
    print term, start, end

    re_line = re.compile("W+|[a-zA-Z0-9]+", re.UNICODE)
    def sentence_from_file(filename):
    with codecs.open(filename, 'r', 'utf-8') as file:
    for line in file:
    for sentence in re_line.split(line):
    yield sentence

    def make_new_word(file_from, file_save):
    word_dict = WordDict()
    #word_dict.add_user_dict('www_qq0')
    for sentence in sentence_from_file(file_from):
    word_dict.learn(sentence)
    word_dict.learn_flush()

    str = '我们的读书会也顺利举办了四期'
    seg_list = word_dict.cut(str)
    print ', '.join(seg_list)

    word_dict.save_to_file(file_save)

    #最大熵算法得到新词
    #def test():
    # make_new_word('qq0', 'www_qq0')
    #cProfile.run('test()')
    #test()

    #test: Get key words from file
    def key_word_test():
    filename = 'key_test.txt'
    with codecs.open(filename, 'r', 'utf-8') as file:
    content = file.read()
    keys = extract_keywords(content)
    #print ','.join(keys)
    print summarize1(content)
    print summarize2(content)
    print summarize3(content)
    #key_word_test()

    #比较文本的相似度
    def compare_file():
    file1 = codecs.open('f1.txt', 'r', 'utf-8')
    file2 = codecs.open('f2.txt', 'r', 'utf-8')
    print 'the near of two files is:', near_duplicate(file1.read(), file2.read())
    #compare_file()

  • 相关阅读:
    shader之渐变长方体实现(threejs)
    shader之threejs应用
    shader之cesium应用
    pip install -- Failed building wheel for XXX
    pycharm -- 界面乱码
    Android Studio -- 优化速度
    django -- ImageField 上传图片修改头像
    AI -- 回溯法解决四皇后问题
    Android Studio -- 真机测试
    傻瓜函数式编程
  • 原文地址:https://www.cnblogs.com/qqhfeng/p/5322016.html
Copyright © 2011-2022 走看看