zoukankan      html  css  js  c++  java
  • #关于 OneVsRestClassifier(LogisticRegression(太慢了,要用超过的机器)

    #关于 OneVsRestClassifier
    #注意以下代码中,有三个类
    from sklearn import datasets
    X, y = datasets.make_classification(n_samples=10000, n_classes=3)
    from sklearn.tree import DecisionTreeClassifier
    dt = DecisionTreeClassifier()
    dt.fit(X, y)
    print(dt.predict(X))
    print ("Accuracy:	", (y == dt.predict(X)).mean())
    
    #利用 OneVsRestClassifier,进行分类
    #它好像是个外壳,还是利用里面的分类器进行分类
    #只不过加快了速度(并行)
    
    from sklearn.multiclass import OneVsRestClassifier
    from sklearn.linear_model import LogisticRegression
    '''
    Now, we'll override the LogisticRegression classifier.
    Also, notice that we can parallelize this.
    If we think about how OneVsRestClassifier works,
    it's just training separate models and then comparing them.
    So, we can train the data separately at the same time:
    '''
    #LogisticRegression 速度很慢
    mlr = OneVsRestClassifier(LogisticRegression(), n_jobs=2)
    mlr.fit(X, y)
    print(mlr.predict(X))
    print ("Accuracy:	", (y == mlr.predict(X)).mean())
  • 相关阅读:
    C#操作符??和?:
    使用Windows8开发Metro风格应用一
    使用Windows8开发Metro风格应用二
    Win8使用技巧
    详解 xls xlst xml 一
    SqlDataAdapter DataSet DataTable 详解
    DataSet 与 xml
    FileTracker : error FTK1011编译错误
    我的CHROME插件
    Komodo升级错误
  • 原文地址:https://www.cnblogs.com/qqhfeng/p/5343587.html
Copyright © 2011-2022 走看看