zoukankan      html  css  js  c++  java
  • hdu 4494 Teamwork 最小费用最大流

    Teamwork

    Time Limit: 20 Sec

    Memory Limit: 256 MB

    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=4494

    Description

    Some locations in city A has been destroyed in the fierce battle. So the government decides to send some workers to repair these locations. There are m kinds of workers that were trained for different skills. Each location need some number of some kinds of workers and has a schedule that at what time can the repair begins, and the time cost of repair. Any job cannot begin until all the workers required arrived. 
    For example, location 1 needs 2 workers of type 1 and 3 workers of type 2, and the beginning time and time cost is 100 minute and 90 minute correspondingly, then 5 workers that satisfy the requirement should arrive before 100 minute, start working at 100 minute and get the job done at 190 minute. Notice that two different types of workers cannot replace each other, so with 3 workers of type 1 and only 2 workers of type 2, this job cannot be done. 
    Workers can go from one location to another after their jobs are done. You can take the Euclidean distance between locations as the time workers need to travel between them. Each worker should be sent from a depot initially at 0 minute. Now your task is to determine the minimum number of workers needed to be sent from depot so that all the jobs can be done.

    Input

    There are multiple test cases, the integer on the first line T (T<25) indicates the number of test cases. 
    Each test case begins with two integers n (<=150), the number of location(including the depot) and m(<=5), the number of different skills. 
    The next line gives two integers x 0, y 0 indicates the coordinate of depot. 
    Then follows n - 1 lines begins with 4 integer numbers: x i, y i, b i(b i>0), p i(p i>0), (x i, y i) gives the coordinate of the i-th location, bi gives the beginning time and pi gives the time cost. The rest of the line gives m non-negative integers v 1, v 2, ..., v m, of which the i-th number indicates the the number of workers of type i needed (for all v i, 0<=v i<10, each location at least requires one worker). 
    All integers are less than 1000000 (10 6).

    Output

    For each test cases output one line, the minimum workers to be sent. It is guaranteed that there's always a feasible solution that all the jobs can be done.

    Sample Input

    2 4 1 0 0 0 1 1 1 3 1 1 3 3 4 1 0 10 1 5 4 1 0 0 0 1 1 1 3 1 1 3 3 4 1 0 3 1 5

    Sample Output

    5 9

    HINT

    题意

    有n个工地,工地的位置在xi,yi,工地必须在bi时间开工,要求持续修建ei时间

    每个工地需要m种人,每种人需要vk个

    工地做完了的,可以派去其他工地

    问你最少需要多少个工人

    题解:

    最小费用最大流

    拆点,建边,u,v,容量,费用

    addedge(0,2*i-1,p[i].v[TTT],0);
    addedge(2*i-1,3*n,p[i].v[TTT],1);
    addedge(2*i,3*n,p[i].v[TTT],0);

    向能够到达的其他点

    addedge(2*i-1,2*j,p[i].v[TTT],0);

    虽然这道题是DAG,但是跑背包会TLE。。。

    代码:

    //qscqesze
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <ctime>
    #include <iostream>
    #include <algorithm>
    #include <set>
    #include <bitset>
    #include <vector>
    #include <sstream>
    #include <queue>
    #include <typeinfo>
    #include <fstream>
    #include <map>
    #include <stack>
    typedef long long ll;
    using namespace std;
    //freopen("D.in","r",stdin);
    //freopen("D.out","w",stdout);
    #define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
    #define maxn 200500
    #define mod 1001
    #define eps 1e-9
    #define pi 3.1415926
    int Num;
    //const int inf=0x7fffffff;
    const ll inf=999999999;
    inline ll read()
    {
        ll x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    //*************************************************************************************
    struct Node
    {
        int x,y,b,e;
        int v[6];
        int V[6];
    };
    Node p[200];
    const int MAXN = 10000;
    const int MAXM = 100000;
    const int INF = 0x3f3f3f3f;
    struct Edge
    {
        int to, next, cap, flow, cost;
        int x, y;
    } edge[MAXM],HH[MAXN],MM[MAXN];
    int head[MAXN],tol;
    int pre[MAXN],dis[MAXN];
    bool vis[MAXN];
    int N, M;
    char map[MAXN][MAXN];
    void init()
    {
        N = MAXN;
        tol = 0;
        memset(head, -1, sizeof(head));
    }
    void addedge(int u, int v, int cap, int cost)//左端点,右端点,容量,花费
    {
        edge[tol]. to = v;
        edge[tol]. cap = cap;
        edge[tol]. cost = cost;
        edge[tol]. flow = 0;
        edge[tol]. next = head[u];
        head[u] = tol++;
        edge[tol]. to = u;
        edge[tol]. cap = 0;
        edge[tol]. cost = -cost;
        edge[tol]. flow = 0;
        edge[tol]. next = head[v];
        head[v] = tol++;
    }
    bool spfa(int s, int t)
    {
        queue<int>q;
        for(int i = 0; i < N; i++)
        {
            dis[i] = INF;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int i = head[u]; i != -1; i = edge[i]. next)
            {
                int v = edge[i]. to;
                if(edge[i]. cap > edge[i]. flow &&
                        dis[v] > dis[u] + edge[i]. cost )
                {
                    dis[v] = dis[u] + edge[i]. cost;
                    pre[v] = i;
                    if(!vis[v])
                    {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(pre[t] == -1) return false;
        else return true;
    }
    //返回的是最大流, cost存的是最小费用
    int minCostMaxflow(int s, int t, int &cost)
    {
        int flow = 0;
        cost = 0;
        while(spfa(s,t))
        {
            int Min = INF;
            for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
            {
                if(Min > edge[i]. cap - edge[i]. flow)
                    Min = edge[i]. cap - edge[i]. flow;
            }
            for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
            {
                edge[i]. flow += Min;
                edge[i^1]. flow -= Min;
                cost += edge[i]. cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    double DDis(Node A,Node B)
    {
        return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
    }
    int main()
    {
        int t;scanf("%d",&t);
        while(t--)
        {
            int n=read(),m=read();
            int x;
            for(int i=0;i<2;i++)
                scanf("%d",&x);
            n--;
            for(int i=1;i<=n;i++)
            {
                scanf("%d%d%d%d",&p[i].x,&p[i].y,&p[i].b,&p[i].e);
                p[i].e+=p[i].b;
                for(int j=1;j<=m;j++)
                {
                    scanf("%d",&p[i].v[j]);
                }
            }
            int Ans = 0;
            for(int TTT=1;TTT<=m;TTT++)
            {
                init();
                for(int i=1;i<=n;i++)
                {
                    addedge(0,2*i-1,p[i].v[TTT],0);
                    addedge(2*i-1,3*n,p[i].v[TTT],1);
                    addedge(2*i,3*n,p[i].v[TTT],0);
                }
                for(int i=1;i<=n;i++)
                {
                    for(int j=1;j<=n;j++)
                    {
                        if(i==j)continue;
                        if(1.0*p[i].e+1.0*DDis(p[i],p[j])<=1.0*p[j].b)
                        {
                            addedge(2*i-1,2*j,p[i].v[TTT],0);
                        }
                    }
                }
                int s=0,t=3*n;
                int ans1 = 0,ans2 = 0;
                ans1 = minCostMaxflow(s,t,ans2);
                Ans+=ans2;
            }
            printf("%d
    ",Ans);
        }
    }
  • 相关阅读:
    mybatis 从数据库查询的信息不完整解决办法
    Mybatis关联查询,查询出的记录数量与数据库直接查询不一致,如何解决?
    UltraEdit快捷键大全-UltraEdit常用快捷键大全
    使用UltraEdit 替换解决---文字中含有逗号的文件,如何把逗号自动转换成为:回车换行呢?
    在对文件进行随机读写,RandomAccessFile类,如何提高其效率
    雷军:曾经干掉山寨机,现在干掉山寨店(将性价比进行到底)
    tbox的项目:vm86(汇编语言虚拟机),tbox(类似dlib),gbox(c语言实现的多平台图形库)
    Delphi XE8 iOS与Android移动应用开发(APP开发)教程[完整中文版]
    人和动物的最大区别,在于能否控制自己
    CWnd和HWND的区别(hWnd只是CWnd对象的一个成员变量,代表与这个对象绑定的窗口)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/4998944.html
Copyright © 2011-2022 走看看