zoukankan      html  css  js  c++  java
  • HDU 4618 Palindrome Sub-Array 暴力

    Palindrome Sub-Array

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=4618

    Description

     A palindrome sequence is a sequence which is as same as its reversed order. For example, 1 2 3 2 1 is a palindrome sequence, but 1 2 3 2 2 is not. Given a 2-D array of N rows and M columns, your task is to find a maximum sub-array of P rows and P columns, of which each row and each column is a palindrome sequence.

      

    Input

      The first line of input contains only one integer, T, the number of test cases. Following T blocks, each block describe one test case.
      There is two integers N, M (1<=N, M<=300) separated by one white space in the first line of each block, representing the size of the 2-D array.
      Then N lines follow, each line contains M integers separated by white spaces, representing the elements of the 2-D array. All the elements in the 2-D array will be larger than 0 and no more than 31415926.
      

    Output

      For each test case, output P only, the size of the maximum sub-array that you need to find.
      

    Sample Input

    1
    5 10
    1 2 3 3 2 4 5 6 7 8
    1 2 3 3 2 4 5 6 7 8
    1 2 3 3 2 4 5 6 7 8
    1 2 3 3 2 4 5 6 7 8
    1 2 3 9 10 4 5 6 7 8

    Sample Output

    4

    Hint

    题意

    给你一个n,m的矩形,你需要找到一个最大正方形,使得每一行每一列都是回文的

    输出正方形的边长

    题解:

    首先把奇数位置都填上-1,然后这样所有回文的东西都是奇数长度了

    暴力预处理出以每一个数为中心,能够向上,向左边扩展多少

    然后我们在n^2暴力枚举回文正方形的中心点,再O(N)的去check最大能扩展多少就好了

    代码

    #include<bits/stdc++.h>
    using namespace std;
    
    const int maxn = 701;
    int M[maxn][maxn];
    int M2[maxn][maxn];
    int Len1[maxn][maxn],Len2[maxn][maxn];
    int n,m;
    void init()
    {
        memset(M,0,sizeof(M));
    	memset(M2,0,sizeof(M2));
    	memset(Len1,0,sizeof(Len1));
    	memset(Len2,0,sizeof(Len2));
    }
    void solve()
    {
    	init();
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<=n;i++)
    		for(int j=1;j<=m;j++)
    			scanf("%d",&M2[i][j]);
    
    	for(int i=1;i<=2*n+1;i++)
    	{
    		for(int j=1;j<=2*m+1;j++)
    		{
    			if(i%2==1||j%2==1)M[i][j]=-1;
    			else M[i][j]=M2[i/2][j/2];
    		}
    	}
    
    	n=n*2+1;
    	m=m*2+1;
    
    	for(int i=1;i<=n;i++)
    	{
    		for(int j=1;j<=m;j++)
    		{
    			int l = 0;
    			for(int k=0;j-k>=1&&j+k<=m;k++)
    			{
    				if(M[i][j-k]==M[i][j+k])
    					l=k;
    				else
    					break;
    			}
    			Len1[i][j]=l;
    		}
    	}
    
    	for(int i=1;i<=n;i++)
    	{
    		for(int j=1;j<=m;j++)
    		{
    			int l = 0;
    			for(int k=0;i+k<=n&&i-k>=1;k++)
    			{
    				if(M[i+k][j]==M[i-k][j])
    					l=k;
    				else
    					break;
    			}
    			Len2[i][j]=l;
    		}
    	}
    
    	int ans = 0;
    
    	for(int i=1;i<=n;i++)
    	{
    		for(int j=1;j<=m;j++)
    		{
    			int Min1 = 1<<30;
    			int Min2 = 1<<30;
    			for(int l=0;i-l>=1&&i+l<=n&&j+l<=m&&j-l>=1;l++)
    			{
    				Min1=min(Min1,Len2[i][j-l]),Min1=min(Min1,Len2[i][j+l]);
    				Min2=min(Min2,Len1[i+l][j]),Min2=min(Min2,Len1[i-l][j]);
    				if(Min1<l||Min2<l)break;
    				if(M[i][j]==-1)ans = max(ans,l);
    				else ans = max(ans,l);
    			}
    		}
    	}
    
    	cout<<ans<<endl;
    	return;
    }
    int main()
    {
    	int t;
    	scanf("%d",&t);
    	while(t--)solve();
    	return 0;
    }
  • 相关阅读:
    ls命令输出文件的绝对路径
    grep命令用关系或查询多个字符串
    pthread_cond_timedwait
    移位运算溢出:右操作数须小于左操作数的位数
    Source Insight symbol not found
    break和continue能否跳出函数
    Oracle ORA-01033: ORACLE initialization or shutdown in progress 错误解决办法. 重启服务
    git bash中不能显示中文
    docker初探
    C++ STL常见数据结构(容器)分类
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5373593.html
Copyright © 2011-2022 走看看