zoukankan      html  css  js  c++  java
  • HDU 5833 Zhu and 772002 高斯消元

    Zhu and 772002

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5833

    Description

    Zhu and 772002 are both good at math. One day, Zhu wants to test the ability of 772002, so he asks 772002 to solve a math problem.

    But 772002 has a appointment with his girl friend. So 772002 gives this problem to you.

    There are n numbers a1,a2,...,an. The value of the prime factors of each number does not exceed 2000, you can choose at least one number and multiply them, then you can get a number b.

    How many different ways of choices can make b is a perfect square number. The answer maybe too large, so you should output the answer modulo by 1000000007.

    Input

    First line is a positive integer T , represents there are T test cases.

    For each test case:

    First line includes a number n(1≤n≤300),next line there are n numbers a1,a2,...,an,(1≤ai≤1018).

    Output

    For the i-th test case , first output Case #i: in a single line.

    Then output the answer of i-th test case modulo by 1000000007.

    Sample Input

    2
    3
    3 3 4
    3
    2 2 2

    Sample Output

    Case #1:
    3
    Case #2:
    3

    Hint

    题意

    给你n个数,然后让你选择一些数,乘起来成为完全平方数,问你有多少种方案。

    题解:

    完全平方数,就是这个数的质因数的次数都是偶数次。

    那么我们对于每一个质因数,我们就可以列一个mod2方程组,A[i][j]就表示第j个数的这个i素数是奇数还是偶数。

    然后就是求这个方程解的个数。

    其实就是2^自由变远的个数,再减去全部不选就好了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 2005;
    const int mod = 1e9+7;
    int p[2005],cnt,vis[2005],cas;
    void init(){
        for(int i=2;i<maxn;i++){
            if(vis[i])continue;
            p[cnt++]=i;
            for(int j=i;j<maxn;j+=i)
                vis[j]=1;
        }
    }
    bitset<330> A[305];
    void solve(){
        for(int i=0;i<305;i++)
            A[i].reset();
        int n;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            long long x;
            scanf("%lld",&x);
            for(int j=0;j<cnt;j++)
            {
                if(x%p[j]==0)
                {
                    int flag = 0;
                    while(x%p[j]==0)
                    {
                        x/=p[j];
                        flag^=1;
                    }
                    A[j][i]=flag;
                }
            }
        }
        int i=0,j=0;
        for(i=0;i<n;i++)
        {
            int id=-1;
            for(int k=j;k<cnt;k++)
            {
                if(A[k][i])
                {
                    id=k;
                    break;
                }
            }
            if(id==-1)continue;
            swap(A[j],A[id]);
            for(int k=j+1;k<cnt;k++)
            {
                if(A[k][i])
                    A[k]^=A[j];
            }
            j++;
        }
        int ans = 1;
        for(int i=0;i<n-j;i++)
            ans = ans * 2 % mod;
        printf("Case #%d:
    %d
    ",++cas,ans-1);
    }
    int main(){
        init();
        int t;
        scanf("%d",&t);
        while(t--){
            solve();
        }
    }
  • 相关阅读:
    你是通过什么渠道获取一般人不知道的知识和信息的?
    用python写MapReduce函数——以WordCount为例
    准确率,召回率,F值,机器学习分类问题的评价指标
    【RS】AutoRec: Autoencoders Meet Collaborative Filtering
    2018 推荐系统总结
    关于协同过滤推荐系统札记
    【RS】Wide & Deep Learning for Recommender Systems
    NeuCF源码中用到的模块(函数)
    【RS】:论文《Neural Collaborative Filtering》的思路及模型框架
    Keras 使用过程问题汇总
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5771155.html
Copyright © 2011-2022 走看看