zoukankan      html  css  js  c++  java
  • Codeforces Round #272 (Div. 2) E. Dreamoon and Strings 动态规划

    E. Dreamoon and Strings

    题目连接:

    http://www.codeforces.com/contest/476/problem/E

    Description

    Dreamoon has a string s and a pattern string p. He first removes exactly x characters from s obtaining string s' as a result. Then he calculates that is defined as the maximal number of non-overlapping substrings equal to p that can be found in s'. He wants to make this number as big as possible.

    More formally, let's define as maximum value of over all s' that can be obtained by removing exactly x characters from s. Dreamoon wants to know for all x from 0 to |s| where |s| denotes the length of string s.

    Input

    The first line of the input contains the string s (1 ≤ |s| ≤ 2 000).

    The second line of the input contains the string p (1 ≤ |p| ≤ 500).

    Both strings will only consist of lower case English letters.

    Output

    Print |s| + 1 space-separated integers in a single line representing the for all x from 0 to |s|.

    Sample Input

    aaaaa
    aa

    Sample Output

    2 2 1 1 0 0

    Hint

    题意

    给你一个串S,和另外一个串P

    把k从0到|S|枚举,然后问你去掉k个字符后,s串里面最多有多少个不重叠的p字符串

    题解:

    dp,dp[i][j]表示考虑到第i个位置,去掉了j个字符的最大值

    然后我们对于每一个位置,先暴力找到最少去掉多少个,才能加一,然后暴力去转移这个玩意儿就好了

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 2005;
    char s1[maxn],s2[maxn];
    int dp[maxn][maxn];
    int len1,len2;
    int solve(int x)
    {
        if(x<len2)return maxn;
        int a=x,b=len2,tmp=0;
        while(a&&b)
        {
            if(s1[a]==s2[b])a--,b--;
            else tmp++,a--;
        }
        if(b==0)return tmp;
        else return maxn;
    }
    int main()
    {
        scanf("%s%s",s1+1,s2+1);
        len1 = strlen(s1+1);
        len2 = strlen(s2+1);
        for(int i=0;i<=len1;i++)
            for(int j=0;j<=len1;j++)
                if(j>i)dp[i][j]=-3000;
        for(int i=1;i<=len1;i++)
        {
            int x=solve(i);
            for(int k=0;k<=len1;k++)
                dp[i][k]=max(dp[i][k],dp[i-1][k]);
            for(int k=0;k<=len1;k++)if(x<=k)
                dp[i][k]=max(dp[i][k],dp[i-x-len2][k-x]+1);
        }
        for(int i=0;i<=len1;i++)
            printf("%d ",dp[len1][i]);
        printf("
    ");
    }
  • 相关阅读:
    33、VCF格式
    10、Perl5中19个最重要的文件系统工具
    9、perldoc文档阅读器
    32、Differential Gene Expression using RNA-Seq (Workflow)
    31、NGS 常用分析软件
    16、SGE作业调度系统的简介
    8、非root权限下安装perl以及perl模块
    31、SAM文件中flag含义解释工具--转载
    30、 bowtie和bowtie2使用条件区别及用法
    C#中委托。
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5794709.html
Copyright © 2011-2022 走看看