zoukankan      html  css  js  c++  java
  • HDU 5909 Tree Cutting 动态规划 快速沃尔什变换

    Tree Cutting

    题目连接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5909

    Description

    Byteasar has a tree T with n vertices conveniently labeled with 1,2,...,n. Each vertex of the tree has an integer value vi.

    The value of a non-empty tree T is equal to v1⊕v2⊕...⊕vn, where ⊕ denotes bitwise-xor.

    Now for every integer k from [0,m), please calculate the number of non-empty subtree of T which value are equal to k.

    A subtree of T is a subgraph of T that is also a tree.

    Input

    The first line of the input contains an integer T(1≤T≤10), denoting the number of test cases.
    
    In each test case, the first line of the input contains two integers n(n≤1000) and m(1≤m≤210), denoting the size of the tree T and the upper-bound of v.
    
    The second line of the input contains n integers v1,v2,v3,...,vn(0≤vi<m), denoting the value of each node.
    
    Each of the following n−1 lines contains two integers ai,bi, denoting an edge between vertices ai and bi(1≤ai,bi≤n).
    
    It is guaranteed that m can be represent as 2k, where k is a non-negative integer.
    

    Output

    For each test case, print a line with m integers, the i-th number denotes the number of non-empty subtree of T which value are equal to i.

    The answer is huge, so please module 109+7.

    Sample Input

    2
    4 4
    2 0 1 3
    1 2
    1 3
    1 4
    4 4
    0 1 3 1
    1 2
    1 3
    1 4

    Sample Output

    3 3 2 3
    2 4 2 3

    Hint

    题意

    给你一棵树,然后问你,里面有多少个连通块的异或和为j

    题解:

    树形DP去做,然后我们考虑转移,用fwt去进行优化就好了
    
    至于为什么这么变换的。。。。
    
    俺也不是很清楚:http://picks.logdown.com/posts/179290-fast-walsh-hadamard-transform
    

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int mod = 1e9+7;
    const int inv = (mod+1)/2;
    const int maxn = 3005;
    int n,m,ans[maxn],val[maxn];
    vector<int> E[maxn];
    long long dp[maxn][maxn],tmp[maxn],a[maxn],b[maxn];
    void fwt(long long *aa,int l,int r)
    {
        if(r-l==1)return;
        int mid=(l+r)/2;
        fwt(aa,l,mid);
        fwt(aa,mid,r);
        int len=mid-l;
        for(int i=l;i<mid;i++)
        {
            long long x1=aa[i];
            long long x2=aa[i+len];
            aa[i]=(x1+x2)%mod;
            aa[i+len]=(x1-x2+mod)%mod;
        }
    }
    void ifwt(long long *aa,int l,int r)
    {
        if(r-l==1)return;
        int mid=(l+r)/2;
        int len=mid-l;
        for(int i=l;i<mid;i++)
        {
            long long y1=aa[i];
            long long y2=aa[i+len];
            aa[i]=(y1+y2)*inv%mod;
            aa[i+len]=((y1-y2+mod)%mod*inv)%mod;
        }
        ifwt(aa,l,mid);
        ifwt(aa,mid,r);
    }
    void solve(long long *aa,long long *bb)
    {
        memcpy(a,aa,sizeof(long long)*m);
        memcpy(b,bb,sizeof(long long)*m);
        fwt(a,0,m);
        fwt(b,0,m);
        memset(tmp,0,sizeof(tmp));
        for(int i=0;i<m;i++)
            tmp[i]=a[i]*b[i]%mod;
        ifwt(tmp,0,m);
    }
    void dfs(int x,int f)
    {
        memset(dp[x],0,sizeof(dp[x]));
        dp[x][val[x]]=1;
        for(int i=0;i<E[x].size();i++){
            int v=E[x][i];
            if(v==f)continue;
            dfs(v,x);
            solve(dp[x],dp[v]);
            for(int j=0;j<m;j++)(dp[x][j]+=tmp[j])%=mod;
        }
        for(int i=0;i<m;i++)(ans[i]+=dp[x][i])%=mod;
    }
    void solve()
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<m;i++)ans[i]=0;
        for(int i=1;i<=n;i++)scanf("%d",&val[i]),E[i].clear();
        for(int i=1;i<n;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            E[x].push_back(y);
            E[y].push_back(x);
        }
        dfs(1,0);
        for(int i=0;i<m;i++)
        {
            if(i==0)printf("%d",ans[i]);
            else printf(" %d",ans[i]);
        }
        printf("
    ");
    }
    int main()
    {
        int t;scanf("%d",&t);
        while(t--)solve();
        return 0;
    }
  • 相关阅读:
    C#编程(四十一)----------用户定义的数据类型转换
    C#编程(四十)----------运算符重载
    C#编程(三十九)----------比较对象的相等性
    下载mqtt.fx
    python3 mqtt 客户端以及服务端
    mac 下使用nasm
    shell equal
    python client.py
    常见面试题
    mysql 包含查找
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5928776.html
Copyright © 2011-2022 走看看