zoukankan      html  css  js  c++  java
  • CROC 2016

    C. Binary Table

    题目连接:

    http://codeforces.com/problemset/problem/662/C

    Description

    You are given a table consisting of n rows and m columns. Each cell of the table contains either 0 or 1. In one move, you are allowed to pick any row or any column and invert all values, that is, replace 0 by 1 and vice versa.

    What is the minimum number of cells with value 1 you can get after applying some number of operations?

    Input

    The first line of the input contains two integers n and m (1 ≤ n ≤ 20, 1 ≤ m ≤ 100 000) — the number of rows and the number of columns, respectively.

    Then n lines follows with the descriptions of the rows. Each line has length m and contains only digits '0' and '1'.

    Output

    Output a single integer — the minimum possible number of ones you can get after applying some sequence of operations.

    Sample Input

    3 4
    0110
    1010
    0111

    Sample Output

    2

    Hint

    题意

    给你一个nm的01矩阵,然后每次操作:你可以挑选任意的某一行或者某一列翻转,然后你需要使得整个矩阵的1的数量尽可能少,问你最少数量是多少。

    题解:

    首先2^nm这个算法很简单:暴力枚举横着怎么翻转,然后每一列O(1)判断就好了。

    然后正解怎么做呢?

    我们令ans[i]是异或i之后的1的个数是多少,那么ans[i] = sigma(cnt[i]*num[i^j),cnt[i]表示列那个二进制为i的个数,num[i]表示二进制为i这个数的1的数量是多少。

    这个很显然发现 i^(i^j) = i,这就是一个异或卷积的形式,用FWT加速计算就好了。

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = (1<<20)+6;
    int n,m,cnt[maxn];
    long long x1[maxn],x2[maxn],ans[maxn];
    string s[maxn];
    long long t[maxn];
    void utfxor(long long a[], int n) {
        if(n == 1) return;
        int x = n >> 1;
        for(int i = 0; i < x; ++ i) {
            t[i] = (a[i] + a[i + x]) >> 1;
            t[i + x] = (a[i + x] - a[i]) >> 1;
        }
        memcpy(a, t, n * sizeof(long long));
        utfxor(a, x); utfxor(a + x, x);
    }
    
    long long tmp[maxn];
    
    void tfxor(long long a[], int n) {
        if(n == 1) return;
        int x = n >> 1;
        tfxor(a, x); tfxor(a + x, x);
        for(int i = 0; i < x; ++ i) {
            tmp[i] = a[i] - a[i + x];
            tmp[i + x] = a[i] + a[i + x];
        }
        memcpy(a, tmp, n * sizeof(long long));
    }
    
    void solve(long long a[],long long b[],int n)
    {
        tfxor(a,n);
        tfxor(b,n);
        for(int i=0;i<n;i++) a[i]=1LL*a[i]*b[i];
        utfxor(a,n);
    }
    
    int main()
    {
        for(int i=0;i<maxn;i++){
            int tmp = i;
            while(tmp){
                if(tmp&1)cnt[i]++;
                tmp>>=1;
            }
        }
        scanf("%d%d",&n,&m);
        for(int i=0;i<n;i++)
            cin>>s[i];
        for(int i=0;i<m;i++){
            int tmp = 0;
            for(int j=0;j<n;j++){
                if(s[j][i]=='1')tmp+=1<<j;
            }
            x1[tmp]++;
        }
        for(int i=0;i<(1<<n);i++)
            x2[i]=min(cnt[i],n-cnt[i]);
        solve(x1,x2,1<<n);
        long long ans = 1e15;
        for(int i=0;i<(1<<n);i++)
            ans=min(ans,x1[i]);
        cout<<ans<<endl;
    }
  • 相关阅读:
    Java第四章课后整理
    java第三章课后作业1
    Java第三章整理
    JAVA第二章课后作业
    JAVA第二章整理
    java课后作业1
    JAVA第一章整理实验
    JAVA大道至简第一章伪代码
    文本数据特征选取的四种方法
    时域分析与频率分析的比较
  • 原文地址:https://www.cnblogs.com/qscqesze/p/6103398.html
Copyright © 2011-2022 走看看