zoukankan      html  css  js  c++  java
  • python RandomForest跑feature重要性

    其实呢,就是直接调用一个函数的事情。。。

    #coding=utf-8
    from sklearn.tree import DecisionTreeClassifier
    from matplotlib.pyplot import *
    from sklearn.cross_validation import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.externals.joblib import Parallel, delayed
    from sklearn.tree import export_graphviz
    
    final = open('full_train.csv','r')
    print "open good!"
    data = [line.strip().split(',') for line in final]
    feature = [[float(x) for x in row[1:]] for row in data]
    target = [int(row[0]) for row in data]
    print "del good!"
    #拆分训练集和测试集
    feature_train, feature_test, target_train, target_test = train_test_split(feature, target, test_size=0.1, random_state=42)
    
    #分类型决策树
    clf = RandomForestClassifier(n_estimators = 8)
    print "train good"
    #训练模型
    s = clf.fit(feature_train , target_train)
    print s
    print "fuck high"
    #评估模型准确率
    r = clf.score(feature_test , target_test)
    print r
    
    print '判定结果:%s' % clf.predict(feature_test[0])
    #print clf.predict_proba(feature_test[0])
    
    print '所有的树:%s' % clf.estimators_
    
    print clf.classes_
    print clf.n_classes_
    
    print '各feature的重要性:%s' % clf.feature_importances_
    
    print clf.n_outputs_
  • 相关阅读:
    js事件入门(6)
    js事件入门(5)
    js事件入门(4)
    js事件入门(3)
    js事件入门(2)
    js事件入门(1)
    js语法基础入门(7)
    js语法基础入门(6)
    spark web ui
    命令行笔记(一)
  • 原文地址:https://www.cnblogs.com/qscqesze/p/6820162.html
Copyright © 2011-2022 走看看