zoukankan      html  css  js  c++  java
  • tensorflow 手写数字识别

    https://www.kaggle.com/kakauandme/tensorflow-deep-nn

    本人只是负责将这个kernels的代码整理了一遍,具体还是请看原链接

    import numpy as np
    import pandas as pd
    import tensorflow
    
    # settings
    LEARNING_RATE = 1e-4
    # set to 20000 on local environment to get 0.99 accuracy
    TRAINING_ITERATIONS = 20000
        
    DROPOUT = 0.5
    BATCH_SIZE = 50
    
    # set to 0 to train on all available data
    VALIDATION_SIZE = 2000
    
    # image number to output
    IMAGE_TO_DISPLAY = 10
    
    # read training data from CSV file 
    data = pd.read_csv('D://kaggle//DigitRecognizer//data//train.csv')
    
    images = data.iloc[:,1:].values
    images = images.astype(np.float)
    # convert from [0:255] => [0.0:1.0]
    images = np.multiply(images, 1.0 / 255.0)
    
    image_size = images.shape[1]
    print ('image_size => {0}'.format(image_size))
    
    # in this case all images are square
    image_width = image_height = np.ceil(np.sqrt(image_size)).astype(np.uint8)
    
    print ('image_width => {0}
    image_height => {1}'.format(image_width,image_height))
    
    labels_flat = data.iloc[:,0].values
    
    print('labels_flat({0})'.format(len(labels_flat)))
    print ('labels_flat[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels_flat[IMAGE_TO_DISPLAY]))
    
    labels_count = np.unique(labels_flat).shape[0]
    
    print('labels_count => {0}'.format(labels_count))
    
    def dense_to_one_hot(labels_dense, num_classes):
        num_labels = labels_dense.shape[0]
        index_offset = np.arange(num_labels) * num_classes
        labels_one_hot = np.zeros((num_labels, num_classes))
        labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
        return labels_one_hot
    
    labels = dense_to_one_hot(labels_flat, labels_count)
    labels = labels.astype(np.uint8)
    
    print('labels({0[0]},{0[1]})'.format(labels.shape))
    print ('labels[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels[IMAGE_TO_DISPLAY]))
    
    # split data into training & validation
    validation_images = images[:VALIDATION_SIZE]
    validation_labels = labels[:VALIDATION_SIZE]
    
    train_images = images[VALIDATION_SIZE:]
    train_labels = labels[VALIDATION_SIZE:]
    
    
    print('train_images({0[0]},{0[1]})'.format(train_images.shape))
    print('validation_images({0[0]},{0[1]})'.format(validation_images.shape))
    
    
    # weight initialization
    def weight_variable(shape):
        initial = tensorflow.truncated_normal(shape, stddev=0.1)
        return tensorflow.Variable(initial)
    
    def bias_variable(shape):
        initial = tensorflow.constant(0.1, shape=shape)
        return tensorflow.Variable(initial)
    
    # convolution
    def conv2d(x, W):
        return tensorflow.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    # pooling
    # [[0,3],
    #  [4,2]] => 4
    
    # [[0,1],
    #  [1,1]] => 1
    
    def max_pool_2x2(x):
        return tensorflow.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    
    # input & output of NN
    
    # images
    x = tensorflow.placeholder('float', shape=[None, image_size])
    # labels
    y_ = tensorflow.placeholder('float', shape=[None, labels_count])
    
    # first convolutional layer
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    
    # (40000,784) => (40000,28,28,1)
    image = tensorflow.reshape(x, [-1,image_width , image_height,1])
    #print (image.get_shape()) # =>(40000,28,28,1)
    
    
    h_conv1 = tensorflow.nn.relu(conv2d(image, W_conv1) + b_conv1)
    #print (h_conv1.get_shape()) # => (40000, 28, 28, 32)
    h_pool1 = max_pool_2x2(h_conv1)
    #print (h_pool1.get_shape()) # => (40000, 14, 14, 32)
    
    
    # Prepare for visualization
    # display 32 fetures in 4 by 8 grid
    layer1 = tensorflow.reshape(h_conv1, (-1, image_height, image_width, 4 ,8))  
    
    # reorder so the channels are in the first dimension, x and y follow.
    layer1 = tensorflow.transpose(layer1, (0, 3, 1, 4,2))
    
    layer1 = tensorflow.reshape(layer1, (-1, image_height*4, image_width*8)) 
    
    # second convolutional layer
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    h_conv2 = tensorflow.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    #print (h_conv2.get_shape()) # => (40000, 14,14, 64)
    h_pool2 = max_pool_2x2(h_conv2)
    #print (h_pool2.get_shape()) # => (40000, 7, 7, 64)
    
    # Prepare for visualization
    # display 64 fetures in 4 by 16 grid
    layer2 = tensorflow.reshape(h_conv2, (-1, 14, 14, 4 ,16))  
    
    # reorder so the channels are in the first dimension, x and y follow.
    layer2 = tensorflow.transpose(layer2, (0, 3, 1, 4,2))
    
    layer2 = tensorflow.reshape(layer2, (-1, 14*4, 14*16)) 
    
    
    # densely connected layer
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    # (40000, 7, 7, 64) => (40000, 3136)
    h_pool2_flat = tensorflow.reshape(h_pool2, [-1, 7*7*64])
    
    h_fc1 = tensorflow.nn.relu(tensorflow.matmul(h_pool2_flat, W_fc1) + b_fc1)
    #print (h_fc1.get_shape()) # => (40000, 1024)
    
    # dropout
    keep_prob = tensorflow.placeholder('float')
    h_fc1_drop = tensorflow.nn.dropout(h_fc1, keep_prob)
    
    
    # readout layer for deep net
    W_fc2 = weight_variable([1024, labels_count])
    b_fc2 = bias_variable([labels_count])
    
    y = tensorflow.nn.softmax(tensorflow.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    #print (y.get_shape()) # => (40000, 10)
    
    
    # cost function
    cross_entropy = -tensorflow.reduce_sum(y_*tensorflow.log(y))
    
    
    # optimisation function
    train_step = tensorflow.train.AdamOptimizer(LEARNING_RATE).minimize(cross_entropy)
    
    # evaluation
    correct_prediction = tensorflow.equal(tensorflow.argmax(y,1),tensorflow.argmax(y_,1))
    
    accuracy = tensorflow.reduce_mean(tensorflow.cast(correct_prediction, 'float'))
    
    # prediction function
    #[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1
    predict = tensorflow.argmax(y,1)
    
    epochs_completed = 0
    index_in_epoch = 0
    num_examples = train_images.shape[0]
    
    # serve data by batches
    def next_batch(batch_size):
        
        global train_images
        global train_labels
        global index_in_epoch
        global epochs_completed
        
        start = index_in_epoch
        index_in_epoch += batch_size
        
        # when all trainig data have been already used, it is reorder randomly    
        if index_in_epoch > num_examples:
            # finished epoch
            epochs_completed += 1
            # shuffle the data
            perm = np.arange(num_examples)
            np.random.shuffle(perm)
            train_images = train_images[perm]
            train_labels = train_labels[perm]
            # start next epoch
            start = 0
            index_in_epoch = batch_size
            assert batch_size <= num_examples
        end = index_in_epoch
        return train_images[start:end], train_labels[start:end]
    
    
    # start TensorFlow session
    init = tensorflow.initialize_all_variables()
    sess = tensorflow.InteractiveSession()
    
    sess.run(init)
    
    # visualisation variables
    train_accuracies = []
    validation_accuracies = []
    x_range = []
    
    display_step=1
    
    for i in range(TRAINING_ITERATIONS):
    
        #get new batch
        batch_xs, batch_ys = next_batch(BATCH_SIZE)        
    
        # check progress on every 1st,2nd,...,10th,20th,...,100th... step
        if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS:
            
            train_accuracy = accuracy.eval(feed_dict={x:batch_xs, 
                                                    y_: batch_ys, 
                                                    keep_prob: 1.0})       
            if(VALIDATION_SIZE):
                validation_accuracy = accuracy.eval(feed_dict={ x: validation_images[0:BATCH_SIZE], 
                                                                y_: validation_labels[0:BATCH_SIZE], 
                                                                keep_prob: 1.0})                                  
                print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i))
                
                validation_accuracies.append(validation_accuracy)
                
            else:
                print('training_accuracy => %.4f for step %d'%(train_accuracy, i))
            train_accuracies.append(train_accuracy)
            x_range.append(i)
            
            # increase display_step
            if i%(display_step*10) == 0 and i:
                display_step *= 10
        # train on batch
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT})
    
    # read test data from CSV file 
    test_images = pd.read_csv('D://kaggle//DigitRecognizer//data//test.csv').values
    test_images = test_images.astype(np.float)
    
    # convert from [0:255] => [0.0:1.0]
    test_images = np.multiply(test_images, 1.0 / 255.0)
    
    print('test_images({0[0]},{0[1]})'.format(test_images.shape))
    
    
    # predict test set
    #predicted_lables = predict.eval(feed_dict={x: test_images, keep_prob: 1.0})
    
    # using batches is more resource efficient
    predicted_lables = np.zeros(test_images.shape[0])
    for i in range(0,test_images.shape[0]//BATCH_SIZE):
        predicted_lables[i*BATCH_SIZE : (i+1)*BATCH_SIZE] = predict.eval(feed_dict={x: test_images[i*BATCH_SIZE : (i+1)*BATCH_SIZE], 
                                                                                    keep_prob: 1.0})
    
    
    print('predicted_lables({0})'.format(len(predicted_lables)))
    
    # output test image and prediction
    #   display(test_images[IMAGE_TO_DISPLAY])
    print ('predicted_lables[{0}] => {1}'.format(IMAGE_TO_DISPLAY,predicted_lables[IMAGE_TO_DISPLAY]))
    
    # save results
    np.savetxt('D://kaggle//DigitRecognizer//submission_softmax.csv', 
            np.c_[range(1,len(test_images)+1),predicted_lables], 
            delimiter=',', 
            header = 'ImageId,Label', 
            comments = '', 
            fmt='%d')
    layer1_grid = layer1.eval(feed_dict={x: test_images[IMAGE_TO_DISPLAY:IMAGE_TO_DISPLAY+1], keep_prob: 1.0})
    sess.close()
  • 相关阅读:
    continue用法
    break用法
    VLAN的划分
    子网掩码的计算
    简述RIP路由协议和OSPF路由协议的相同点和不同点。
    工程监理的内容是什么?
    工程监理的意义和职责是什么?
    双绞线测试的参数主要有哪些?
    光纤熔接损耗原因?
    综合布线系统的设计等级有哪几种?各有什么特点?
  • 原文地址:https://www.cnblogs.com/qscqesze/p/7056494.html
Copyright © 2011-2022 走看看