zoukankan      html  css  js  c++  java
  • Codeforces Round #428 (Div. 2) D. Winter is here 容斥

    D. Winter is here

    题目连接:

    http://codeforces.com/contest/839/problem/D

    Description

    Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n soldiers. While the rest of the world is fighting for the Iron Throne, he is going to get ready for the attack of the White Walkers.

    He has created a method to know how strong his army is. Let the i-th soldier’s strength be ai. For some k he calls i1, i2, ..., ik a clan if i1 < i2 < i3 < ... < ik and gcd(ai1, ai2, ..., aik) > 1 . He calls the strength of that clan k·gcd(ai1, ai2, ..., aik). Then he defines the strength of his army by the sum of strengths of all possible clans.

    Your task is to find the strength of his army. As the number may be very large, you have to print it modulo 1000000007 (109 + 7).

    Greatest common divisor (gcd) of a sequence of integers is the maximum possible integer so that each element of the sequence is divisible by it.

    Input

    The first line contains integer n (1 ≤ n ≤ 200000) — the size of the army.

    The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000000) — denoting the strengths of his soldiers.

    Output

    Print one integer — the strength of John Snow's army modulo 1000000007 (109 + 7).

    Sample Input

    3
    3 3 1

    Sample Output

    12

    Hint

    题意

    让你考虑所有gcd大于1的集合。这个集合的贡献是gcd乘上集合的大小。
    问你总的贡献是多少。

    题解:

    令cnt[i]表示因子含有i的数的个数
    (f(i)=1*C(cnt[i],1)+2*C(cnt[i],2)+...+cnt[i]*C(cnt[i],cnt[i]))
    那么ans[i]=f(i)*2^(cnt[i]-1)-f(2i)-f(3i)-....
    ans[i]表示gcd为i的答案

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6+7;
    const int mod = 1e9+7;
    
    long long p[maxn],w[maxn];
    long long cnt[maxn];
    long long a[maxn];
    int n;
    int main(){
        p[0]=1;
        for(int i=1;i<maxn;i++)p[i]=p[i-1]*2ll%mod;
        for(int i=1;i<maxn;i++)w[i]=i;
        for(int i=2;i<maxn;i++){
            for(int j=i+i;j<maxn;j+=i){
                w[j]-=w[i];
            }
        }
        cin>>n;
        for(int i=1;i<=n;i++){
            cin>>a[i];
            cnt[a[i]]++;
        }
        long long ans = 0;
        for(int i=2;i<maxn;i++){
            long long tmp = 0;
            for(int j=i;j<maxn;j+=i){
                tmp+=cnt[j];
            }
            ans=(ans+(tmp*w[i]%mod)*p[tmp-1]%mod)%mod;
        }
        cout<<ans<<endl;
    }
  • 相关阅读:
    Map,Multimap,Set,MultiSet,Hash_Map,Hash_Set,Share_ptr的区分
    mjpgstreamer源码分析
    S3C2410x介绍
    V4L2应用程序框架
    V4L2驱动框架
    Linux 视频设备驱动V4L2最常用的控制命令使用说明
    (转)在eclipse中查看android SDK的源代码
    [经验技巧] 利用WindowsPhone7_SDK_Full.rar_for_xp,在xp下安装sdk,部署xap软件的教程
    (收藏)智能手机开发
    Html5相关文章链接
  • 原文地址:https://www.cnblogs.com/qscqesze/p/7352705.html
Copyright © 2011-2022 走看看