zoukankan      html  css  js  c++  java
  • 洛谷P4159 [SCOI2009] 迷路 题解 矩阵快速幂/拆点

    题目链接:https://www.luogu.com.cn/problem/P4159

    题目大意:
    给你一个包含 (n) 个点的有向图以及一个邻接矩阵,求从 (1) 号点到 (n) 号点的长度为 (t) 的路径有多少种。有向边长度 (le 9)

    解题思路:

    如果每条边的长度都为 (1) ,则直接可以用矩阵连乘做。但是没有

    考虑到每条边的长度都不超过 (9),所以考虑把每条边都拆分成若干条长度为 (1) 的边,这就需要额外地添加一些点。

    具体地说(为了方面起见,我把一开始的 (n) 个点的编号从 (0) 开始,即 (0,1,2, cdots, n-1) 号节点):

    对于节点 (i(0 le i lt n)),将其拆分成 (i cdot 9, i cdot 9 + 1, i cdot 9 + 2, cdots , i cdot 9 + 8)(9) 个点。
    然后对于所有 (1 le j lt 9),连一条 (i cdot 9 + j ightarrow i cdot 9 + j - 1) 的边(边权为 (1))。
    然后,如果从节点 (x) 到节点 (y) 有一条边权为 (q) 的边,则从 (x cdot 9)(y cdot 9 + q - 1) 连一条边(边权为 (1))。
    然后就相当于将原始的图转变成了一个边权为 (1) 的有向图了。

    具体如下图所示:

    然后在这个邻接矩阵上做矩阵快速幂就可以了。

    示例代码:

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 110, MOD = 2009;
    struct Matrix {
        int n, a[maxn][maxn];
        Matrix operator * (Matrix b) const {
            Matrix c;
            c.n = n;
            memset(c.a, 0, sizeof(c.a));
            for (int i = 0; i < n; i ++)
                for (int j = 0; j < n; j ++)
                    for (int k = 0; k < n; k ++)
                        c.a[i][j] = (c.a[i][j] + a[i][k] * b.a[k][j]) % MOD;
            return c;
        }
        Matrix operator ^ (int m) const {
            Matrix b, c;
            b.n = c.n = n;
            memcpy(b.a, a, sizeof(a));
            memset(c.a, 0, sizeof(c.a));
            for (int i = 0; i < n; i ++) c.a[i][i] = 1;
            while (m) {
                if (m % 2) c = c * b;
                b = b * b;
                m /= 2;
            }
            return c;
        }
    } a;
    int n, t;
    char s[11];
    int main() {
        cin >> n >> t;
        a.n = n * 9;
        memset(a.a, 0, sizeof(a.a));
        for (int i = 0; i < n; i ++) {
            for (int j = 1; j < 9; j ++)
                a.a[i*9+j][i*9+j-1] = 1;
        }
        for (int i = 0; i < n; i ++) {
            cin >> s;
            for (int j = 0; j < n; j ++) {
                int num = s[j] - '0';
                if (num) {
                    int x = j * 9 + num - 1;
                    a.a[i*9][x] = 1;
                }
            }
        }
        cout << (a ^ t).a[0][(n-1)*9] << endl;
        return 0;
    }
    
  • 相关阅读:
    主外键 子查询
    正则表达式
    css3 文本效果
    css3 2d
    sql 基本操作
    插入 视频 音频 地图
    j-query j-query
    document
    js dom 操作
    js
  • 原文地址:https://www.cnblogs.com/quanjun/p/13960456.html
Copyright © 2011-2022 走看看