zoukankan      html  css  js  c++  java
  • (高斯消元)HDU2827 The Evaluation of Determinant

    The determinant is quite important in Linear Algebras, but I think that almost everyone who has ever learnt Linear Algebras is tired of the complicated and tedious calculations of determinant. Actually, it’s not the job we should do, isn’t it? As an outstanding Geek, why don’t we just ask computers to do these? 


    Give you a determinant D (it’s ensured that the result of it is an integer) and m, try to get the result of this determinant mod m, and m = p1 * p2 …… pn, all the pi are different. You can assume 1000 < pi < 10000, aij < 1000, and m can be fit in 32-bit signed integer. 

    InputInput two integers n and m in the first line, n represents the scale of the determinant. (n <= 100) 
     Then comes an n * n matrix, the determinant’s component aij means the one in row i and column j. 
    OutputOutput the result of the determinant D mod m.Sample Input

    2 1009
    1 2
    3 4

    Sample Output

    1007

    用高斯消元法化为对角线形式即可。

    纯暴力进行过多swap的高斯消元会TLE

    #include <iostream>
    #include <string>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include <queue>
    #include <set>
    #include <map>
    #include <list>
    #include <vector>
    #include <stack>
    #define mp make_pair
    //#define P make_pair
    #define MIN(a,b) (a>b?b:a)
    //#define MAX(a,b) (a>b?a:b)
    typedef long long ll;
    typedef unsigned long long ull;
    const int MAX=1e3+5;
    const int MAX_V=1e3+5;
    const int INF=1e9+5;
    const ll INF2=4e18+5;
    const double M=4e18;
    using namespace std;
    const int MOD=1e9+7;
    typedef pair<ll,int> pii;
    const double eps=0.000000001;
    #define rank rankk
    ll n,m;
    ll a[MAX][MAX];
    ll Gause()
    {
        ll re=1;
        int st=0;
        for(ll i=1;i<=n;i++)
        {
            for(ll j=i+1;j<=n;j++)
            {
                ll x=i,y=j;
                while(a[y][i])
                {
                    ll ex=a[x][i]/a[y][i];
                    for(ll s=i;s<=n;s++)
                    {
                        a[x][s]=((a[x][s]-ex*a[y][s]%m)%m+m)%m;
                    }
                    swap(x,y);
                }
                if(x!=i)
                {
                    for(ll s=i;s<=n;s++)
                        swap(a[i][s],a[x][s]);
                    st^=1;
                }
            }
            if(!a[i][i])
                return 0;
        }
        for(ll i=1;i<=n;i++)
            re=(re*a[i][i]%m+m)%m;
        if(st)
            re*=-1;
        if(re<0)
            re+=m;
        return re;
    }
    int main()
    {
        while(~scanf("%I64d%I64d",&n,&m))
        {
            for(ll i=1;i<=n;i++)
                for(ll j=1;j<=n;j++)
                {
                    scanf("%I64d",&a[i][j]);
                    a[i][j]=(a[i][j]%m+m)%m;
                }
            printf("%I64d
    ",Gause());
        }
        return 0;
    }
  • 相关阅读:
    MSDTC服务出错
    jquery.lazyload.js实现图片延迟加载——wordpress图片随滚动条渐显效果
    js:警惕firstChild
    基于jquery的表格排序
    jquery JSON的解析方式
    用JS jquery取float型小数点后两位
    JQuery之append和appendTo的区别,还有js中的appendChild用法
    js笔记之Math random()、ceil()、floor()、round()
    Oracle笔记
    STL: equal
  • 原文地址:https://www.cnblogs.com/quintessence/p/6940843.html
Copyright © 2011-2022 走看看