zoukankan      html  css  js  c++  java
  • CNN2 多层卷积

    延续上一篇进行修改,可用于多层卷积网络,按mini batch传播,正确率96%左右。

    存在的问题是卷积速度过慢,学习率更新方式。

    下一篇将使用im2col。

    # coding:utf8
    import cPickle
    import numpy as np
    from  scipy.signal.signaltools import convolve2d
    
    class ConvPoolLayer(object):  
        def __init__(self, image_shape,filter_shape,poolsize=(2,2)):
            self.filter_shape = filter_shape
            self.image_shape = image_shape
            self.w = np.random.normal(loc=0, scale=np.sqrt(1.0/np.prod(filter_shape[1:])),
                                      size=filter_shape)
            self.b = np.random.normal(loc=0, scale=0.2, size=(filter_shape[0],))
            self.poolsize = poolsize
            self.samp_shape=(image_shape[-2] - filter_shape[-2] + 1,image_shape[-1] - filter_shape[-1] + 1)
            self.out_shape=(self.samp_shape[0]/poolsize[0],self.samp_shape[1]/poolsize[1])
    
        def conv(self,a, v,b=0,mod=-1,r1=0,r2=0):
            n, m, h, w = np.shape(a)
            vn, vm, vh, vw = np.shape(v)
            assert m == vm, 'wrong filter shape'
            d, s = h + mod*(vh - 1), w + mod*(vw - 1)
            z = np.zeros((n, vn, d, s))
            for i in range(n):
                for j in range(vn):
                    for k in range(m):
                        if mod==-1:
                            z[i][j] += convolve2d(a[i][k], np.rot90(v[j][k],r1), mode='valid')
                        else:
                            z[i][j] += convolve2d(a[i][k], np.rot90(v[j][k],r1), mode='full')
                    if r2==1:
                        z[i][j]=np.rot90(z[i][j],2)
                if type(b)!=int:
                        z[i]+=b[j]
            return z
    
        def feedforward(self, a):
            self.out = self.relu(self.conv(a, self.w,self.b))
            return np.array(self.pool2d(self.out))
    
        def backprop(self, x, dnext,eta=0.001):
            if dnext.ndim<3:
                dnext = np.reshape(dnext,(self.image_shape[0],self.filter_shape[0], self.out_shape[0], self.out_shape[1]))
            u = self.relu_prime(self.out)
            delta = np.multiply(u,self.up(dnext,self.poolsize[0]))
            delta=np.rollaxis(delta,1,0)
            out_delta = self.conv(np.rollaxis(delta, 1, 0), np.rollaxis(self.w, 1, 0), mod=1,r1=2)
            b = np.array([np.sum(d_) for d_ in delta])
            w = np.array(self.conv(np.rollaxis(x,1,0), delta,r1=2,r2=1))
            w = np.rollaxis(w,1,0)
            self.w -= eta * w/self.image_shape[0]
            self.b -= eta * b/self.image_shape[0]
            return out_delta
    
        def pool2d(self,input, ds=(2, 2), mode='max'):
            fun = np.max
            if mode == 'sum':
                fun = np.sum
            elif mode == 'average':
                fun = np.average
            n, m, h, w = np.shape(input)
            d, s = ds
            zh = h / d + h % d
            zw = w / s + w % s
            z = np.zeros((n, m, zh, zw))
            for k in range(n):
                for o in range(m):
                    for i in range(zh):
                        for j in range(zw):
                            z[k, o, i, j] = fun(input[k, o, d * i:min(d * i + d, h), s * j:min(s * j + s, w)])
            return z
    
        def up(self,a,l):
            b=np.ones((l,l))
            return np.kron(a,b)
    
        def relu(self,z):
            return np.maximum(z, 0.0)
    
        def relu_prime(self,z):
            z[z>0]=1
            return z
    
    class SoftmaxLayer(object):
        def __init__(self, in_num=100,out_num=10):
            self.weights = np.random.randn(in_num, out_num)/np.sqrt(out_num)
    
        def feedforward(self, input):
            self.out=self.softmax(np.dot(input, self.weights))
            return self.out
    
        def backprop(self, input, y,eta=0.001):
            o=self.out
            delta =o-y
            out_delta=np.dot(delta,self.weights.T)
            w = np.dot(input.T,delta)
            self.weights-=eta*(w)
            return out_delta
    
        def softmax(self,a):
            m = np.exp(a)
            return m / (np.sum(m,axis=1)[:,np.newaxis])
    
    class FullLayer(object):
        def __init__(self, in_num=720,out_num=100):
            self.in_num=in_num
            self.out_num=out_num
            self.biases = np.random.randn(out_num)
            self.weights = np.random.randn(in_num, out_num)/np.sqrt(out_num)
    
        def feedforward(self, x):
            if x.ndim>2:
                x = np.reshape(x, (len(x), self.in_num))
            self.out = self.sigmoid(np.dot(x, self.weights)+self.biases)
            return self.out
    
        def backprop(self, x,delta,eta=0.001):
            if x.ndim>2:
                x = np.reshape(x, (len(x), self.in_num))
            sp=self.sigmoid_prime(self.out)
            delta = delta * sp
            out_delta = np.dot(delta, self.weights.T)
            w = np.dot( x.T,delta)
            self.weights-=eta*w
            self.biases -= eta*np.sum(delta,0)
            return out_delta
    
        def sigmoid(self,z):
            return 1.0/(1.0+np.exp(-z))
    
        def sigmoid_prime(self,z):
            return z*(1-z)
    
    class Network(object):
        def __init__(self, layers):
            self.layers=layers
            self.num_layers = len(layers)
            self.a=[]
    
        def feedforward(self, x):
            self.a.append(x)
            for layer in self.layers:
                x=layer.feedforward(x)
                self.a.append(x)
            return x
    
        def SGD(self, training_data, test_data,epochs, mini_batch_size, eta=0.001):
            self.n = len(training_data[0])
            self.mini_batch_size=mini_batch_size
            self.eta = eta
            cx=range(epochs)
            for j in cx:
                for k in xrange(0, self.n , mini_batch_size):
                    batch_x = np.array(training_data[0][k:k + mini_batch_size])
                    batch_y = training_data[1][k:k + mini_batch_size]
                    self.backprop(batch_x,batch_y)
                    if k%500==0:
                        print "Epoch {0}:{1} cost={3}, test:{2}".format(j,k,
                        self.evaluate([test_data[0],test_data[1]]),self.cost)
    
        def backprop(self, x_in, y):
            self.feedforward(x_in)
            for i in range(self.num_layers):
                delta=self.layers[-i-1].backprop(self.a[-i-2],y,eta=self.eta)
                y=delta
    
        def evaluate(self, test_data):
            x,y=test_data
            num=len(x)
            size=self.mini_batch_size
            x=[self.feedforward(np.array(x[size*i:size*i+size])) for i in range((num/size))]
            x=np.reshape(x,(num,np.shape(x)[-1]))
            xp = np.argmax(x, axis=1)
            yp= np.argmax(y, axis=1) if y[0].ndim else y
            self.cost = -np.mean(np.log(x)[np.arange(num),yp])
            return np.mean(yp == xp)*100
    
    
    if __name__ == '__main__':
            def get_data(data):
                return [np.reshape(x, (1,28,28)) for x in data[0]]
    
            def get_label(i):
                c = np.zeros((10))
                c[i] = 1
                return c
    
            f = open('data/mnist.pkl', 'rb')
            training_data, validation_data, test_data = cPickle.load(f)
            training_inputs = get_data(training_data)
            training_label=[get_label(y_) for y_ in training_data[1]]
            test_inputs = get_data(test_data)
            test = zip(test_inputs,test_data[1])
            size=10
            net = Network([ConvPoolLayer(image_shape=[size,1,28,28],filter_shape=[8,1,5,5],poolsize=(2,2)),
                           ConvPoolLayer(image_shape=[size,8,12,12],filter_shape=[16,8,5,5], poolsize=(2,2)),
                           FullLayer(in_num=16*4*4,out_num=100),
                           SoftmaxLayer(in_num=100,out_num=10)])
            net.SGD([training_inputs,training_label],[test_inputs[:500],test_data[1][:500]],
                    epochs=3,mini_batch_size=size, eta=0.05)
            
            #  Epoch 0:10000 cost=0.137396947661, test:95.6
  • 相关阅读:
    MySQL Case When 用法
    Delphi磁性窗口
    一个灵巧的Delphi多播实事件现方案.
    Delphi bpl 插件框架
    Win7下超级管理员创建普通权限任务
    Delphi 插件(Plugins)创建、调试与使用应用程序扩展
    Dll中导出类Delphi实战
    让你的程序支持插件
    构造一个通用的回调Thunk.(把回调函数指向对象的方法的办法)
    打造类.NET带垃圾回收功能的Delphi版GDIPlus
  • 原文地址:https://www.cnblogs.com/qw12/p/6366573.html
Copyright © 2011-2022 走看看