zoukankan      html  css  js  c++  java
  • Dijkstra算法求最短路模板

    Dijkstra算法适合求不包含负权路的最短路径,通过点增广、在稠密图中使用优化过的版本速度非常可观。本篇不介绍算法原理、只给出模板,这里给出三种模板,其中最实用的是加上了堆优化的版本

    算法原理 or 学习参考链接 : 点我 不要点它点我!为何不适用于带负权边图       

              

                   ( Dijkstra 动态演示 )

    朴素版 ( 邻接矩阵存储、复杂度 O( n2 ) )

    ///HDU 2544为例
    #include<stdio.h>
    #include<string.h>
    const int INF  = 0x3f3f3f3f;
    const int maxn =  1001;
    
    bool vis[maxn];
    int G[maxn][maxn],dis[maxn],pre[maxn];//pre[]记录前驱、用于输出路径
    int n, m;
    void dijkstra(int v)
    {
        int i, j, u , Min;
        for(i=0;i<=n;i++){
            dis[i]=G[v][i];
            vis[i]=0;
            //if(i!=v&&G[v][i]!=INF)pre[i] = v;
           // else pre[i] = -1;
        }
        vis[v]=1;dis[v]=0;
        for(i=1;i<n;i++){
            Min = INF;
            for(j=1;j<=n;j++){
                if(!vis[j]&&Min > dis[j]){
                    Min = dis[j];
                    u = j;
                }
            }
            if(Min == INF)break;
            vis[u]=1;
            for(j=1;j<=n;j++){
                if(!vis[j]&&G[u][j]!=INF&&dis[u]+G[u][j]<dis[j]){
                    dis[j] = G[u][j] + dis[u];
                  //  pre[j] = u;
                }
            }
        }
    }
    int main()
    {
        int i, j, x, y, w;
        while(~scanf("%d%d",&n,&m)&&n)
        {
            for(i=0;i<=n;i++)
                for(j=0;j<=n;j++)
                    if(i==j)G[i][j]=0;
                    else G[i][j] = INF;
    
            while(m--){
                scanf("%d%d%d",&x,&y,&w);
                G[x][y] = w;
                G[y][x] = w;
            }
            dijkstra(1);
            printf("%d
    ",dis[n]);  //以下为输出路径
            /*int p, len=0, ans[maxn];
            p = n-1;
            while(p!=0)
            {
                ans[len++] = p;
                p = pre[p];
    
            }
            printf("0->");
            for(i=len-1;i>=0;i--)
                printf("%d",ans[i]);
            puts("");  */
        }
        return 0;
    }
    View Code

    STL优先队列优化版本 ( 复杂度 O( (V+E)logV ) )、此优化需要用邻接表存图

    ///POJ 2387为例
    #include<stdio.h>
    #include<string.h>
    #include<queue>
    #include<algorithm>
    #include<stdlib.h>
    using namespace std;
    const int maxn = 1e3 + 50;
    const int INF = 0x3f3f3f3f;
    typedef pair<int, int> HeapNode;///在堆里面的是pair、first为到起点距离、second为点编号
    struct EDGE{ int v, nxt, w; };
    
    int Head[maxn], Dis[maxn];
    EDGE Edge[maxn*100];
    int N, M, cnt;
    
    inline void init()
    {
        for(int i=0; i<=N; i++)
            Head[i]=-1, Dis[i]=INF;
        cnt = 0;
    }
    
    inline void AddEdge(int from, int to, int weight)
    {
        Edge[cnt].w = weight;
        Edge[cnt].v = to;
        Edge[cnt].nxt = Head[from];
        Head[from] = cnt++;
    }
    
    int Dijkstra()
    {
        priority_queue<HeapNode, vector<HeapNode>, greater<HeapNode> > Heap;
        Dis[1] = 0;
        Heap.push(make_pair(0, 1));
        while(!Heap.empty()){
            pair<int, int> T = Heap.top(); Heap.pop();
            if(T.first != Dis[T.second]) continue;///有很多版本都是用 vis 标记是否已经使用这个点松弛过、这里可以用这个不同的方法!
            
            for(int i=Head[T.second]; i!=-1; i=Edge[i].nxt){
                int Eiv = Edge[i].v;
                if(Dis[Eiv] > Dis[T.second] + Edge[i].w){
                    Dis[Eiv] = Dis[T.second] + Edge[i].w;
                    Heap.push(make_pair(Dis[Eiv], Eiv));
                }
            }
        }
        return Dis[N];
    }
    
    int main(void)
    {
        while(~scanf("%d %d", &M, &N)){
    
            init();
    
            int from, to, weight;
            for(int i=0; i<M; i++){
                scanf("%d %d %d", &from, &to, &weight);
                AddEdge(from, to, weight);
                AddEdge(to, from, weight);
            }
    
            printf("%d
    ", Dijkstra());
        }
        return 0;
    }
    View Code

    传说中还有一种斐波那契堆,比STL默认的堆更高效、但是斐波那契堆难写难理解、故用配对堆来代替( 复杂度 O(VlogV + E) )

    ///POJ 2387为例
    #include<stdio.h>
    #include<algorithm>
    #include<stdlib.h>
    #include<string.h>
    using namespace std;
    const int maxn = 1e3 + 10;
    const int INF  = 0x3f3f3f3f;
    struct EDGE{ int v, nxt, w; };
    EDGE Edge[maxn*maxn];
    int Head[maxn], Dis[maxn], T, N, cnt;
    int Cost[maxn][maxn];
    inline void init()
    {
        for(int i=0; i<=N; i++){
            Head[i]=-1,Dis[i]=INF;
            for(int j=0; j<=N; j++){
                Cost[i][j] = INF;
            }
        }
        cnt=0;
    }
    
    inline void ADD(int from, int to, int weight)
    {
        Edge[cnt].w=weight,
        Edge[cnt].v = to;
        Edge[cnt].nxt = Head[from];
        Head[from] = cnt++;
    }
    
    struct Heap{
        int num[maxn],pos[maxn],Size;
    
        void PushUp(int p) {
            while(p > 1) {
                if(Dis[num[p]] < Dis[num[p >> 1]]) {
                    swap(num[p],num[p >> 1]);
                    swap(pos[num[p]],pos[num[p >> 1]]);
                    p >>= 1;
                }
                else break;
            }
        }
        void Insert(long long x) {
            num[++Size] = x;
            pos[x] = Size;
            PushUp(Size);
        }
        void Pop() {
            pos[num[1]] = 0;
            num[1] = num[Size--];
            if(Size)    pos[num[1]] = 1;
            int now = 2;
            while(now < Size) {
                if(Dis[num[now + 1]] < Dis[num[now]])
                    ++now;
                if(Dis[num[now]] < Dis[num[now >> 1]]) {
                    swap(num[now],num[now >> 1]);
                    swap(pos[num[now]],pos[num[now >> 1]]);
                    now <<= 1;
                }
                else break;
            }
        }
    }heap;///配对堆
    
    int Dijkstra()
    {
        Dis[1] = 0;
        for(int i=1; i<=N; i++) heap.Insert(i);
        while(heap.Size){
            int x = heap.num[1]; heap.Pop();
            for(int i=Head[x]; i!=-1; i=Edge[i].nxt)
                if(Dis[Edge[i].v] > Dis[x] + Edge[i].w)
                    Dis[Edge[i].v] = Dis[x] + Edge[i].w,
                    heap.PushUp(heap.pos[Edge[i].v]);
        }
        return Dis[N];
    }
    
    int main(void)
    {
        while(~scanf("%d %d", &T, &N)){
    
            init();
    
            int from, to, weight;
            for(int i=0; i<T; i++){
                scanf("%d %d %d", &from, &to, &weight);
                if(Cost[from][to] > weight){
                    Cost[from][to] = Cost[to][from] = weight;
                    ADD(from, to, weight);
                    ADD(to, from, weight);
                }
            }
    
            printf("%d
    ", Dijkstra());
        }
        return 0;
    }
    手撕配对堆版本

    在 Linux 下有pbds可以调用,里面可以调用二叉堆、配对堆、斐波那契堆……

    ///POJ 2387为例
    #include<stdio.h>
    #include<string.h>
    #include<queue>
    #include<algorithm>
    #include<ext/pb_ds/priority_queue.hpp>///记得加上
    #include<stdlib.h>
    using namespace __gnu_pbds;///记得加上
    using namespace std;
    const int maxn = 1e3 + 5;
    const int INF = 0x3f3f3f3f;
    typedef pair<int, int> HeapNode;
    struct EDGE{ int v, nxt, w; };
    
    inline int read()
    {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    
    int Head[maxn], Dis[maxn];
    EDGE Edge[maxn*100];
    int N, M, cnt;
    
    inline void init()
    {
        for(int i=0; i<=N; i++)
            Head[i]=-1, Dis[i]=INF;
        cnt = 0;
    }
    
    inline void AddEdge(int from, int to, int weight)
    {
        Edge[cnt].w = weight;
        Edge[cnt].v = to;
        Edge[cnt].nxt = Head[from];
        Head[from] = cnt++;
    }
    
    int Dijkstra()
    {
        __gnu_pbds::priority_queue<HeapNode,greater<HeapNode>,pairing_heap_tag > Heap;///申请方式、其余和普通优先队列无差别
        Dis[1] = 0;
        Heap.push(make_pair(0, 1));
        while(!Heap.empty()){
            pair<int, int> Top = Heap.top();
            Heap.pop();
            int v = Top.second;
            if(Top.first != Dis[v]) continue;
            for(int i=Head[v]; i!=-1; i=Edge[i].nxt){
                int tmp = Edge[i].v;
                if(Dis[tmp] > Dis[v] + Edge[i].w){
                    Dis[tmp] = Dis[v] + Edge[i].w;
                    Heap.push(make_pair(Dis[tmp], tmp));
                }
            }
        }
        return Dis[N];
    }
    
    int main(void)
    {
        while(~scanf("%d %d", &M, &N)){
    
            init();
    
            int from, to, weight;
            for(int i=0; i<M; i++){
                from = read(); to = read(); weight = read();
                AddEdge(from, to, weight);
                AddEdge(to, from, weight);
            }
    
            printf("%d
    ", Dijkstra());
        }
        return 0;
    }
    pbds
  • 相关阅读:
    利用IIS应用请求转发ARR实现IIS和tomcat整合共用80端口
    Application Request Route实现IIS Server Farms集群负载详解
    jQuery插件之ajaxFileUpload
    百度上传组件
    jQuery选择器总结 jQuery 的选择器可谓之强大无比,这里简单地总结一下常用的元素查找方法
    如何使 WebAPI 自动生成漂亮又实用在线API文档
    Swagger+AutoRest 生成web api客户端(.Net)
    小程序开发的40个技术窍门,纯干货!
    为你下一个项目准备的 50 个 Bootstrap 插件
    In-Memory:内存数据库
  • 原文地址:https://www.cnblogs.com/qwertiLH/p/7687600.html
Copyright © 2011-2022 走看看