zoukankan      html  css  js  c++  java
  • [leetcode]1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree

    [leetcode]1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree

    链接

    leetcode

    描述

      Given two binary trees original and cloned and given a reference to a node target in the original tree.

      The cloned tree is a copy of the original tree.

      Return a reference to the same node in the cloned tree.

      Note that you are not allowed to change any of the two trees or the target node and the answer must be a reference to a node in the cloned tree.

    Follow up: Solve the problem if repeated values on the tree are allowed.

    Example 1:
    img

    Input: tree = [7,4,3,null,null,6,19], target = 3
    Output: 3
      Explanation: In all examples the original and cloned trees are shown. The target node is a green node from the original tree. The answer is the yellow node from the cloned tree.
    Example 2:
    img

    Input: tree = [7], target = 7
    Output: 7
    Example 3:
    img

    Input: tree = [8,null,6,null,5,null,4,null,3,null,2,null,1], target = 4
    Output: 4
    Example 4:
    img

    Input: tree = [1,2,3,4,5,6,7,8,9,10], target = 5
    Output: 5
    Example 5:
    img

    Input: tree = [1,2,null,3], target = 2
    Output: 2

    Constraints:

    The number of nodes in the tree is in the range [1, 10^4].
    The values of the nodes of the tree are unique.
    target node is a node from the original tree and is not null.

    solution

      采用最朴素的BFS(广度优先遍历)即可;

    class Solution {
    public:
    	TreeNode* getTargetCopy(TreeNode* original, TreeNode* cloned, TreeNode* target) {
    		queue<TreeNode*> oq, cq;
    		if (original == NULL)
    			return NULL;
    		oq.push(original);
    		cq.push(cloned);
    
    		while (!oq.empty())
    		{
    			TreeNode *tmp = oq.front();
    			TreeNode *tmpC = cq.front();
    
    			oq.pop();
    			cq.pop();
    
    			if (tmp == target)
    				return tmpC;
    
    			if (tmp->left)
    			{
    				oq.push(tmp->left);
    				cq.push(tmpC->left);
    			}
    
    			if (tmp->right)
    			{
    				oq.push(tmp->right);
    				cq.push(tmpC->right);
    			}
    		}
    		return NULL;
    	}
    };
    

    分析

      时间复杂度 O(n);n是二叉树中节点的个数,树种的每一个节点只会被遍历一次;
      空间复杂度O(1)

    clik me github
    personal page

    blogs record our growth
  • 相关阅读:
    hdu 1599 find the mincost route (最小环与floyd算法)
    hdu 3371(prim算法)
    hdu 1598 find the most comfortable road (并查集+枚举)
    hdu 1879 继续畅通工程 (并查集+最小生成树)
    hdu 1272 小希的迷宫(并查集+最小生成树+队列)
    UVA 156 Ananagrams ---map
    POJ 3597 Polygon Division (DP)
    poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化
    poj 3734 Blocks 快速幂+费马小定理+组合数学
    CodeForces 407B Long Path (DP)
  • 原文地址:https://www.cnblogs.com/qwfand/p/12568547.html
Copyright © 2011-2022 走看看