zoukankan      html  css  js  c++  java
  • leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution)

    leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution)

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

    Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

    Example 1:
    Input: cost = [10, 15, 20]
    Output: 15
    Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
    Example 2:
    Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
    Output: 6
    Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
    Note:
    cost will have a length in the range [2, 1000].
    Every cost[i] will be an integer in the range [0, 999].

    solution

    top要么是 top - 1 上去的,要么是 top -2 上去的
    故动态规划的状态转移方程为:
    dp[i] = min{dp[i-1]+cost[i-1], dp[i -2]+cost[i-2]}
    可以从第0阶开始,也可以从第1阶开始,故动态规划处理两次即可

    class Solution {
    public:
    	int minCostClimbingStairs(vector<int>& cost) {
    		int n = cost.size();
    		int dp[n + 1];
    		dp[0] = 0;
    		dp[1] = cost[0];
    		for (int i = 2; i <= n; i++)
    			dp[i] = (dp[i - 1] + cost[i - 1]) < (dp[i - 2] + cost[i - 2]) ? (dp[i - 1] + cost[i - 1]) : (dp[i - 2] + cost[i - 2]);
    
    		int dp1[n + 1];
    		dp1[0] = 0;
    		dp1[1] = cost[1];
    		for (int i = 2; i <= n - 1; i++)
    			dp1[i] = (dp1[i - 1] + cost[i]) < (dp1[i - 2] + cost[i - 1]) ? (dp1[i - 1] + cost[i]) : (dp1[i - 2] + cost[i - 1]);
    
    		if (dp1[n - 1] < dp[n])
    			return dp1[n - 1];
    		else
    			return dp[n];
    
    	}
    };
    

    相关链接

    leetcode

    blogs record our growth
  • 相关阅读:
    Detours的使用 HOOK类CString::LoadString函数
    04-树7 二叉搜索树的操作集 (30分)
    04-树6 Complete Binary Search Tree (30分)
    04-树5 Root of AVL Tree (25分)
    04-树4 是否同一棵二叉搜索树 (25分)
    03-树3 Tree Traversals Again (25分)
    C# 调用SQL的存储过程的接口及实现
    利用存储过程来提高数据库的更新问题
    ASP.Net MVC实现一个表单多个submit
    优化EF的性能
  • 原文地址:https://www.cnblogs.com/qwfand/p/12673043.html
Copyright © 2011-2022 走看看