zoukankan      html  css  js  c++  java
  • Solution -「洛谷 P5827」点双连通图计数

    (mathcal{Description})

      link.
      求有 (n) 个结点的点双连通图的个数,对 (998244353) 取模。
      (nle10^5)

    (mathcal{Solution})

      奇怪的 GF 增加了 w!
      对于带标号简单无向图,其 ( ext{EGF})(F(x)=displaystylesum_{i=0}^{+infty}frac{2^{ichoose2}x^i}{i!})(任意两点间有连与不连两种情况。)在此基础上,我们要求图连通(注意这里不是点双连通),即对于带标号简单连通无向图( ext{EGF})(G(x)=ln F(x))
      以下规定所有的图都是带标号的简单无向图。设有根连通图( ext{EGF})(D(x)),显然 (D(x)=nG(x))。并设 (i) 个结点的点双连通图个数为 (b_i)。考虑任意一个简单无向图的根,它可能被包含在多个点双中。首先特判掉 (n=1) ——单点的情况。现在对于每一个不是根且在点双连通分量上的点,我们都可以在上面插上一个以其为根的无向连通图,并且不会影响到包含原来的根的任何点双连通分量的大小。所以每一个点双块的 ( ext{EGF}) 是:

    [sum_{i=1}frac{b_{i+1}D^i(x)}{i!} ]

      令 (B(x)=sum_{i=0}^{+infty}b_{i+1}frac{x^i}{i!}),我们反过来表示 (D(x)),则:

    [D(x)=xexp Bleft(D(x) ight) ]

      开始推式子,先对上式变形:

    [Bleft(D(x) ight)=lnfrac{D(x)}x ]

      令 (D^{-1})(D) 的复合逆,代入得:

    [B(x)=lnfrac{x}{D^{-1}(x)} ]

      令 (H(x)=lnfrac{D(x)}x),那么有 (B(x)=Hleft(D^{-1}(x) ight))。利用扩展拉格朗日反演,有:

    [[x^n]B(x)=frac{1}n[x^{n-1}]H'(x)left(frac{x}{D(x)} ight)^n ]

      把后面的多项式幂变形,并交换分子分母以便运算,得:

    [[x^n]B(x)=frac{1}n[x^{n-1}]H'(x)expleft(-nlnfrac{D(x)}x ight) ]

      (D) 易求,那么整个式子都能用亿堆多项式模板算出来。复杂度 (mathcal O(nlog n))

    (mathcal{Code})

    #include <cmath>
    #include <cstdio>
    
    const int MAXN = 1 << 18, MOD = 998244353;
    int n, fac[MAXN + 5], ifac[MAXN + 5], inv[MAXN + 5], F[MAXN + 5], G[MAXN + 5];
    int H[MAXN + 5], lH[MAXN + 5], dH[MAXN + 5];
    
    inline int qkpow ( int a, int b, const int p = MOD ) {
    	int ret = 1;
    	for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
    	return ret;
    }
    
    namespace Poly {
    
    const int G = 3;
    
    inline void NTT ( const int n, int* A, const int tp ) {
    	static int lstn = -1, rev[MAXN + 5] {};
    	if ( lstn ^ n ) {
    		int lgn = log ( n ) / log ( 2 ) + 0.5;
    		for ( int i = 0; i < n; ++ i ) rev[i] = ( rev[i >> 1] >> 1 ) | ( ( i & 1 ) << lgn >> 1 );
    		lstn = n;
    	}
    	for ( int i = 0; i < n; ++ i ) if ( i < rev[i] ) A[i] ^= A[rev[i]] ^= A[i] ^= A[rev[i]];
    	for ( int i = 2, stp = 1; i <= n; i <<= 1, stp <<= 1 ) {
    		int w = qkpow ( G, ( MOD - 1 ) / i );
    		if ( ! ~ tp ) w = qkpow ( w, MOD - 2 );
    		for ( int j = 0; j < n; j += i ) {
    			for ( int k = j, r = 1; k < j + stp; ++ k, r = 1ll * r * w % MOD ) {
    				int ev = A[k], ov = 1ll * r * A[k + stp] % MOD;
    				A[k] = ( ev + ov ) % MOD, A[k + stp] = ( ev - ov + MOD ) % MOD;
    			}
    		}
    	}
    	if ( ! ~ tp ) for ( int i = 0; i < n; ++ i ) A[i] = 1ll * A[i] * inv[n] % MOD;
    }
    
    inline void polyDir ( const int n, const int* A, int* R ) {
    	for ( int i = 1; i < n; ++ i ) R[i - 1] = 1ll * i * A[i] % MOD;
    	R[n - 1] = 0;
    }
    
    inline void polyInt ( const int n, const int* A, int* R ) {
    	for ( int i = n - 1; ~ i; -- i ) R[i + 1] = 1ll * inv[i + 1] * A[i] % MOD;
    	R[0] = 0;
    }
    
    inline void polyInv ( const int n, const int* A, int* R ) {
    	static int tmp[2][MAXN + 5] {};
    	if ( n == 1 ) return void ( R[0] = qkpow ( A[0], MOD - 2 ) );
    	polyInv ( n >> 1, A, R );
    	for ( int i = 0; i < n; ++ i ) tmp[0][i] = A[i], tmp[1][i] = R[i];
    	NTT ( n << 1, tmp[0], 1 ), NTT ( n << 1, tmp[1], 1 );
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD * tmp[1][i] % MOD;
    	NTT ( n << 1, tmp[0], -1 );
    	for ( int i = 0; i < n; ++ i ) R[i] = ( 2ll * R[i] % MOD - tmp[0][i] + MOD ) % MOD;
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = tmp[1][i] = 0;
    }
    
    inline void polyLn ( const int n, const int* A, int* R ) {
    	static int tmp[2][MAXN + 5] {};
    	polyDir ( n, A, tmp[0] ), polyInv ( n, A, tmp[1] );
    	NTT ( n << 1, tmp[0], 1 ), NTT ( n << 1, tmp[1], 1 );
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = 1ll * tmp[0][i] * tmp[1][i] % MOD;
    	NTT ( n << 1, tmp[0], -1 ), polyInt ( n << 1, tmp[0], R );
    	for ( int i = 0; i < n << 1; ++ i ) tmp[0][i] = tmp[1][i] = 0;
    }
    
    inline void polyExp ( const int n, const int* A, int* R ) {
    	static int tmp[MAXN + 5] {};
    	if ( n == 1 ) return void ( R[0] = 1 );
    	polyExp ( n >> 1, A, R ), polyLn ( n, R, tmp );
    	tmp[0] = ( A[0] + 1 - tmp[0] + MOD ) % MOD;
    	for ( int i = 1; i < n; ++ i ) tmp[i] = ( A[i] - tmp[i] + MOD ) % MOD;
    	NTT ( n << 1, tmp, 1 ), NTT ( n << 1, R, 1 );
    	for ( int i = 0; i < n << 1; ++ i ) R[i] = 1ll * R[i] * tmp[i] % MOD;
    	NTT ( n << 1, R, -1 );
    	for ( int i = n; i < n << 1; ++ i ) R[i] = tmp[i] = 0;
    }
    
    } // namespace Poly.
    
    inline void init () {
    	inv[1] = fac[0] = ifac[0] = fac[1] = ifac[1] = 1;
    	for ( int i = 2; i <= MAXN; ++ i ) {
    		fac[i] = 1ll * i * fac[i - 1] % MOD;
    		inv[i] = 1ll * ( MOD - MOD / i ) * inv[MOD % i] % MOD;
    		ifac[i] = 1ll * inv[i] * ifac[i - 1] % MOD;
    	}
    	int len = MAXN >> 1;
    	for ( int i = 0; i < len; ++ i ) F[i] = 1ll * qkpow ( 2, ( i * ( i - 1ll ) >> 1 ) % ( MOD - 1 ) ) * ifac[i] % MOD;
    	Poly::polyLn ( len, F, G );
    	for ( int i = 0; i < len; ++ i ) G[i] = 1ll * i * G[i] % MOD;
    	for ( int i = 0; i < len - 1; ++ i ) G[i] = G[i + 1];
    	G[len - 1] = 0;
    	Poly::polyLn ( len, G, H ), Poly::polyDir ( len, H, dH );
    	Poly::NTT ( MAXN, dH, 1 );
    }
    
    inline void solve () {
    	int len = MAXN >> 1;
    	if ( ! -- n ) return void ( puts ( "1" ) );
    	for ( int i = 0; i < MAXN; ++ i ) F[i] = G[i] = 0;
    	for ( int i = 0; i < len; ++ i ) F[i] = 1ll * ( MOD - n ) % MOD * H[i] % MOD;
    	Poly::polyExp ( len, F, G ), Poly::NTT ( MAXN, G, 1 );
    	for ( int i = 0; i < MAXN; ++ i ) G[i] = 1ll * dH[i] * G[i] % MOD;
    	Poly::NTT ( MAXN, G, -1 );
    	printf ( "%d
    ", int ( 1ll * inv[n] * fac[n] % MOD * G[n - 1] % MOD ) );
    }
    
    int main () {
    	init ();
    	for ( int i = 1; i <= 5; ++ i ) scanf ( "%d", &n ), solve ();
    	return 0;
    }
    
  • 相关阅读:
    年年岁岁花相似,岁岁年年竟相同
    两情相悦,亦或情投意合
    FreeBSD学习笔记1
    MySQL学习笔记2
    门户网站镜像站以及CDN技术
    候车
    MySQL学习笔记1
    JDBC | 第一章: 快速开始使用JDBC连接Mysql数据库之简单CRUD
    JDBC | 第零章: 什么是JDBC?
    JDBC | 第二章: JDBC之批量更新,添加,和删除操作
  • 原文地址:https://www.cnblogs.com/rainybunny/p/13283555.html
Copyright © 2011-2022 走看看