(mathcal{Description})
Link.
给定一棵含 (n) 个点的有根树,点有点权,支持 (q) 次操作:
- 询问 (u) 到根的点权和;
- 修改 (u) 的父亲,保证得到的图仍是树;
- 将 (u) 子树内的点权增加一常数。
(nle10^5),(qle3 imes10^5)。
(mathcal{Solution})
ETT (Euler Tour Tree),是一种能快速处理子树移动的动态树。本质上,它将树保存作欧拉序,由于子树移动体现在欧拉序上是区间移动,那么就能使用平衡树维护序列。路径查询亦对应了一段区间内仅出现一次的结点贡献和,记每个结点第一次出现为正贡献,后一次出现为负贡献就变成了区间查询,亦能用平衡树维护。本题即 ETT 板题。
复杂度自然是 (mathcal O((n+q)log n)) 的。
(mathcal{Code})
/*~Rainybunny~*/
#include <cstdio>
#include <cassert>
#include <cstdlib>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
const int MAXN = 1e5;
int n, ecnt, head[MAXN + 5], w[MAXN + 5], root, st[MAXN + 5], ed[MAXN + 5];
struct Edge { int to, nxt; } graph[MAXN + 5];
inline void link( const int s, const int t ) {
graph[++ecnt] = { t, head[s] }, head[s] = ecnt;
}
struct Treap {
static const int MAXND = MAXN << 1;
int node, ch[MAXND + 5][2], fa[MAXND + 5], siz[MAXND + 5], aux[MAXND + 5],
sign[MAXND + 5], ssiz[MAXND + 5];
LL val[MAXND + 5], sum[MAXND + 5], tag[MAXND + 5];
Treap() { srand( 20120712 ); }
inline int crtnd( const int v, const int s ) {
int u = ++node;
aux[u] = rand(), siz[u] = 1;
sign[u] = ssiz[u] = s;
val[u] = sum[u] = v * s;
return u;
}
inline void pushad( const int u, const LL x ) {
val[u] += sign[u] * x, tag[u] += x, sum[u] += x * ssiz[u];
}
inline void pushup( const int u ) {
siz[u] = siz[ch[u][0]] + siz[ch[u][1]] + 1;
ssiz[u] = ssiz[ch[u][0]] + ssiz[ch[u][1]] + sign[u];
sum[u] = sum[ch[u][0]] + sum[ch[u][1]] + val[u];
}
inline void pushdn( const int u ) {
if ( tag[u] ) {
if ( ch[u][0] ) pushad( ch[u][0], tag[u] );
if ( ch[u][1] ) pushad( ch[u][1], tag[u] );
tag[u] = 0;
}
}
inline int merge( const int u, const int v ) {
if ( !u || !v ) return u | v;
pushdn( u ), pushdn( v );
if ( aux[u] < aux[v] ) {
ch[u][1] = merge( ch[u][1], v );
if ( ch[u][1] ) fa[ch[u][1]] = u;
return pushup( u ), u;
} else {
ch[v][0] = merge( u, ch[v][0] );
if ( ch[v][0] ) fa[ch[v][0]] = v;
return pushup( v ), v;
}
}
inline void rsplit( const int u, const int k, int& x, int& y ) {
if ( !u ) return void( x = y = 0 );
fa[u] = 0, pushdn( u );
if ( siz[ch[u][0]] >= k ) {
y = u, rsplit( ch[u][0], k, x, ch[y][0] );
if ( ch[y][0] ) fa[ch[y][0]] = y;
} else {
x = u, rsplit( ch[u][1], k - siz[ch[u][0]] - 1, ch[x][1], y );
if ( ch[x][1] ) fa[ch[x][1]] = x;
}
pushup( u );
}
inline int rank( int u ) {
int ret = siz[ch[u][0]] + 1;
while ( fa[u] ) {
if ( ch[fa[u]][1] == u ) ret += siz[ch[fa[u]][0]] + 1;
u = fa[u];
}
return ret;
}
} trp;
inline void init( const int u ) {
root = trp.merge( root, st[u] = trp.crtnd( w[u], 1 ) );
for ( int i = head[u]; i; i = graph[i].nxt ) init( graph[i].to );
root = trp.merge( root, ed[u] = trp.crtnd( w[u], -1 ) );
}
inline LL query( const int u ) {
int l = trp.rank( st[1] ), r = trp.rank( st[u] ), x, y, z;
assert( l == 1 );
trp.rsplit( root, l - 1, x, y ), trp.rsplit( y, r - l + 1, y, z );
LL ret = trp.sum[y];
root = trp.merge( x, trp.merge( y, z ) );
return ret;
}
inline void change( const int u, const int p ) {
int l = trp.rank( st[u] ), r = trp.rank( ed[u] ), tar = trp.rank( st[p] ),
x, y, z, m;
if ( tar < l ) {
trp.rsplit( root, tar, x, y );
trp.rsplit( y, l - tar - 1, y, z );
trp.rsplit( z, r - l + 1, z, m );
} else {
trp.rsplit( root, l - 1, x, y );
trp.rsplit( y, r - l + 1, y, z );
trp.rsplit( z, tar - r, z, m );
}
root = trp.merge( trp.merge( x, z ), trp.merge( y, m ) );
}
inline void update( const int u, const int p ) {
int l = trp.rank( st[u] ), r = trp.rank( ed[u] ), x, y, z;
trp.rsplit( root, l - 1, x, y ), trp.rsplit( y, r - l + 1, y, z );
trp.pushad( y, p ), root = trp.merge( x, trp.merge( y, z ) );
}
int main() {
scanf( "%d", &n );
for ( int i = 2, t; i <= n; ++i ) scanf( "%d", &t ), link( t, i );
rep ( i, 1, n ) scanf( "%d", &w[i] );
init( 1 );
char op[5]; int q, a, b;
for ( scanf( "%d", &q ); q--; ) {
scanf( "%s %d", op, &a );
if ( op[0] == 'Q' ) printf( "%lld
", query( a ) );
else if ( op[0] == 'C' ) scanf( "%d", &b ), change( a, b );
else scanf( "%d", &b ), update( a, b );
}
return 0;
}