zoukankan      html  css  js  c++  java
  • Mann-Whitney 秩和检验

    定义

    Mann-Whitney 秩和检验,也被称为 Mann-Whitney-U 检验,是另一类非参数检验方法,它们不对数据分布作特殊假设,因而能适用于更复杂的数据分布情况。

    秩和检验的做法是,首先将两类样本混合在一起,对所有样本按照所考察的特征从小到大排序。在两类样本中分别计算所得排序序号之和T1 和T2 ,称作秩和。两类的样本数分别是n1个和n2。秩和检验的基本思想是,如果一类样本的秩和显著地比另一类小(或大),则两类样本在所考察的特征上有显著差异。秩和检验的统计量就是某一类(如第一类,秩和为T1)的秩和为了比较两类样本的秩和是否差异显著,需要比较T分布,当样本数目较大时,人们可以用正态分布来近似秩和T1 的分布。

    实例 & 代码

    研究不同饲料对雌鼠体重增加是否有差异,数据表如下表所示(显著性水平为0.05):

    饲料 鼠数 各鼠增加的体重/g
    高蛋白 12 134,146,104,119,124,61,107,83,113,129,97,123
    低蛋白 7 70,118,101,85,112,132,94
    import scipy.stats as stats
    weight_high=[134,146,104,119,124,161,107,83,113,129,97,123]
    weight_low=[70,118,101,85,112,132,94]
    stats.mannwhitneyu(weight_high,weight_low,alternative='two-sided')

    结果解释

    结果如下:
    MannwhitneyuResult ( statistic = 62.0, pvalue = 0.09934224785346528 )
    由于p值大于0.05,故可以认为没有显著差异。

    参数说明

    • x, y:array_like
      样本数据数组
    • use_continuity:bool, optional
      是否需要0.5的连续性校正,建议小样本需要。默认值为 True 。
    • alternative:{None, ‘less’, ‘two-sided’, ‘greater’}, optional
      ‘two-sided’ 表示双侧检验,‘greater’ 为备择假设是大于的单边检验,‘less’ 为备择假设是小于的单边检验,None 表示双侧检验 p 值的一半。默认值为 None 。
  • 相关阅读:
    rabbitmq系统学习(三)集群架构
    rabbitmq系统学习(二)
    rabbitmq系统学习(一)
    itext实现pdf自动定位合同签订
    itext7知识点研究(PDF编辑)
    itext实现合同尾部签章部分自动添加,定位签名
    ELK实战(Springboot日志输出查找)
    [Wireshark]_002_玩转数据包
    [Wireshark]_001_入门
    [Objective-C] 014_Objective-C 代码规范指南
  • 原文地址:https://www.cnblogs.com/raisok/p/12659592.html
Copyright © 2011-2022 走看看