zoukankan      html  css  js  c++  java
  • 【转】TCP之深入浅出send和recv

    本篇我们用一个测试机上的阻塞socket实例来说明主题。文章中所有图都是在测试系统上现截取的。

    需要理解的3个概念

    1. TCP socket的buffer

    每个TCP socket在内核中都有一个发送缓冲区和一个接收缓冲区,TCP的全双工的工作模式以及TCP的流量(拥塞)控制便是依赖于这两个独立的buffer以及buffer的填充状态。

    接收缓冲区把数据缓存入内核,应用进程一直没有调用recv()进行读取的话,此数据会一直缓存在相应socket的接收缓冲区内。再啰嗦一点,不管进程是否调用recv()读取socket,对端发来的数据都会经由内核接收并且缓存到socket的内核接收缓冲区之中recv()所做的工作,就是把内核缓冲区中的数据拷贝到应用层用户的buffer里面,并返回,仅此而已。

    进程调用send()发送的数据的时候,最简单情况(也是一般情况),将数据拷贝进入socket的内核发送缓冲区之中,然后send便会在上层返回。换句话说,send()返回之时,数据不一定会发送到对端去(和write写文件有点类似),send()仅仅是把应用层buffer的数据拷贝进socket的内核发送buffer中,发送是TCP的事情,和send其实没有太大关系。

    接收缓冲区被TCP用来缓存网络上来的数据,一直保存到应用进程读走为止。对于TCP,如果应用进程一直没有读取,接收缓冲区满了之后,发生的动作是:收端通知发端,接收窗口关闭(win=0)。这个便是滑动窗口的实现。保证TCP套接口接收缓冲区不会溢出,从而保证了TCP是可靠传输。因为对方不允许发出超过所通告窗口大小的数据。 这就是TCP的流量控制,如果对方无视窗口大小而发出了超过窗口大小的数据,则接收方TCP将丢弃它。如果是UDP的话,没有流量控制,当接收缓冲区满时,新来的数据报就无法进入接收缓冲区,此数据报就会被丢弃。
    查看测试机的socket发送缓冲区大小,如图1所示

    图1

    第一个值是一个限制值,socket发送缓存区的最少字节数;
    第二个值是默认值;
    第三个值是一个限制值,socket发送缓存区的最大字节数;
    根据实际测试,发送缓冲区的尺寸在默认情况下的全局设置是16384字节,即16k。
    在测试系统上,发送缓存默认值是16k。
    proc文件系统下的值和sysctl中的值都是全局值,应用程序可根据需要在程序中使用setsockopt()对某个socket的发送缓冲区尺寸进行单独修改,详见文章《TCP选项之SO_RCVBUF和SO_SNDBUF》,不过这都是题外话。

    2. 接收窗口(滑动窗口)

    TCP连接建立之时的收端的初始接受窗口大小是14600,细节如图2所示(129是收端,130是发端)

    图2

    接收窗口是TCP中的滑动窗口,TCP的收端用这个接受窗口----win=14600,通知发端,我目前的接收能力是14600字节。
    后续发送过程中,收端会不断的用ACK(ACK的全部作用请参照博文《TCP之ACK发送情景》)通知发端自己的接收窗口的大小状态,如图3,而发端发送数据的量,就根据这个接收窗口的大小来确定,发端不会发送超过收端接收能力的数据量。这样就起到了一个流量控制的的作用。

    图3
    图3说明
    21,22两个包都是收端发给发端的ACK包
    第21个包,收端确认收到的前7240个字节数据,7241的意思是期望收到的包从7241号开始,序号加了1.同时,接收窗口从最初的14656(如图2)经过慢启动阶段增加到了现在的29120。用来表明现在收端可以接收29120个字节的数据,而发端看到这个窗口通告,在没有收到新的ACK的时候,发端可以向收端发送29120字节这么多数据。
    第22个包,收端确认收到的前8688个字节数据,并通告自己的接收窗口继续增长为32000这么大。

    3. 单个TCP的负载量和MSS的关系

    MSS在以太网上通常大小是1460字节,而我们在后续发送过程中的单个TCP包的最大数据承载量是1448字节,这二者的关系可以参考博文《TCP之1460MSS和1448负载》。

    实例详解send()

    实例功能说明:接收端129作为客户端去连接发送端130,连接上之后并不调用recv()接收,而是sleep(1000),把进程暂停下来,不让进程接收数据。内核会缓存数据至接收缓冲区。发送端作为服务器接收TCP请求之后,立即用ret = send(sock,buf,70k,0);这个C语句,向接收端发送70k数据。
    我们现在来观察这个过程。看看究竟发生了些什么事。wireshark抓包截图如下图4

    图4


    图4说明,包序号等同于时序
    1. 客户端sleep在recv()之前,目的是为了把数据压入接收缓冲区。服务端调用"ret = send(sock,buf,70k,0);"这个C语句,向接收端发送70k数据。由于发送缓冲区大小16k,send()无法将70k数据全部拷贝进发送缓冲区,故先拷贝16k进入发送缓冲区,下层发送缓冲区中有数据要发送,内核开始发送。上层send()在应用层处于阻塞状态;
    2. 11号TCP包,发端从这儿开始向收端发送1448个字节的数据;
    3. 12号TCP包,发端没有收到之前发送的1448个数据的ACK包,仍然继续向收端发送1448个字节的数据;
    4. 13号TCP包,收端向发端发送1448字节的确认包,表明收端成功接收总共1448个字节。此时收端并未调用recv()读取,目前发送缓冲区中被压入1448字节。由于处于慢启动状态,win接收窗口持续增大,表明接受能力在增加,吞吐量持续上升;
    5. 14号TCP包,收端向发端发送2896字节的确认包,表明收端成功接收总共2896个字节。此时收端并未调用recv()读取,目前发送缓冲区中被压入2896字节。由于处于慢启动状态,win接收窗口持续增大,表明接受能力在增加,吞吐量持续上升;
    6. 15号TCP包,发端继续向收端发送1448个字节的数据;
    7. 16号TCP包,收端向发端发送4344字节的确认包,表明收端成功接收总共4344个字节。此时收端并未调用recv()读取,目前发送缓冲区中被压入4344字节。由于处于慢启动状态,win接收窗口持续增大,表明接受能力在增加,吞吐量持续上升;
    8. 从这儿开始,我略去很多包,过程类似上面过程。同时,由于不断的发送出去的数据被收端用ACK确认,发送缓冲区的空间被逐渐腾出空地,send()内部不断的把应用层buf中的数据向发送缓冲区拷贝,从而不断的发送,过程重复。70k数据并没有被完全送入内核,send()不管是否发送出去,send不管发送出去的是否被确认,send()只关心buf中的数据有没有被全部送往发送缓冲区。如果buf中的数据没有被全部送往发送缓冲区,send()在应用层阻塞,负责等待发送缓冲区中有空余空间的时候,逐步拷贝buf中的数据;如果buf中的数据被全部拷入发送缓冲区,send()立即返回。
    9. 经过慢启动阶段接收窗口增大到稳定阶段,TCP吞吐量升高到稳定阶段,收端一直处于sleep状态,没有调用recv()把内核中接收缓冲区中的数据拷贝到应用层去,此时收端的接收缓冲区中被压入大量数据;
    10. 66号、67号TCP数据包,发端继续向收端发送数据;
    11. 68号TCP数据包,收端发送ACK包确认接收到的数据,ACK=62265表明收端已经收到62265字节的数据,这些数据目前被压在收端的接收缓冲区中。win=3456,比较之前的16号TCP包的win=23296,表明收端的窗口已经处于收缩状态,收端的接收缓冲区中的数据迟迟未被应用层读走,导致接收缓冲区空间吃紧,故收缩窗口,控制发送端的发送量,进行流量控制;
    12. 69号、70号TCP数据包,发端在接收窗口允许的数据量的范围内,继续向收端发送2段1448字节长度的数据;
    13. 71号TCP数据包,至此,收端已经成功接收65160字节的数据,全部被压在接收缓冲区之中,接收窗口继续收缩,尺寸为1600字节;
    14. 72号TCP数据包,发端在接收窗口允许的数据量的范围内,继续向收端发送1448字节长度的数据;
    15. 73号TCP数据包,至此,收端已经成功接收66609字节的数据,全部被压在接收缓冲区之中,接收窗口继续收缩,尺寸为192字节。
    16. 74号TCP数据包,和我们这个例子没有关系,是别的应用发送的包;
    17. 75号TCP数据包,发端在接收窗口允许的数据量的范围内,向收端发送192字节长度的数据;
    18. 76号TCP数据包,至此,收端已经成功接收66609字节的数据,全部被压在接收缓冲区之中,win=0接收窗口关闭,接收缓冲区满,无法再接收任何数据;
    19. 77号、78号、79号TCP数据包,由keepalive触发的数据包,响应的ACK持有接收窗口的状态win=0,另外,ACK=66801表明接收端的接收缓冲区中积压了66800字节的数据。
    20. 从以上过程,我们应该熟悉了滑动窗口通告字段win所说明的问题,以及ACK确认数据等等。现在可得出一个结论,接收端的接收缓存尺寸应该是66800字节(此结论并非本篇主题)。
    send()要发送的数据是70k,现在发出去了66800字节,发送缓存中还有16k,应用层剩余要拷贝进内核的数据量是N=70k-66800-16k。接收端仍处于sleep状态,无法recv()数据,这将导致接收缓冲区一直处于积压满的状态,窗口会一直通告0(win=0)。发送端在这样的状态下彻底无法发送数据了,send()的剩余数据无法继续拷贝进内核的发送缓冲区,最终导致send()被阻塞在应用层;
    21. send()一直阻塞中。。。

    图4和send()的关系说明完毕。
    那什么时候send返回呢?有3种返回场景

    send()返回场景

    场景1,我们继续图4这个例子,不过这儿开始我们就跳出图4所示的过程了

    22. 接收端sleep(1000)到时间了,进程被唤醒,代码片段如图5

    图5
    随着进程不断的用"recv(fd,buf,2048,0);"将数据从内核的接收缓冲区拷贝至应用层的buf,在使用win=0关闭接收窗口之后,现在接收缓冲区又逐渐恢复了缓存的能力,这个条件下,收端会主动发送携带"win=n(n>0)"这样的ACK包去通告发送端接收窗口已打开;

    23. 发端收到携带"win=n(n>0)"这样的ACK包之后,开始继续在窗口运行的数据量范围内发送数据。发送缓冲区的数据被发出;
    24. 收端继续接收数据,并用ACK确认这些数据;
    25. 发端收到ACK,可以清理出一些发送缓冲区空间,应用层send()的剩余数据又可以被不断的拷贝进内核的发送缓冲区;
    26. 不断重复以上发送过程;
    27. send()的70k数据全部进入内核,send()成功返回。

    场景2,我们继续图4这个例子,不过这儿开始我们就跳出图4所示的过程了
    22. 收端进程或者socket出现问题,给发端发送一个RST,请参考博文《》;
    23. 内核收到RST,send返回-1。

    场景3,和以上例子没关系
    连接上之后,马上send(1k),这样,发送的数据肯定可以一次拷贝进入发送缓冲区,send()拷贝完数据立即成功返回。

    send()发送结论

    其实场景1和场景2说明一个问题
    send()只是负责拷贝,拷贝完立即返回,不会等待发送和发送之后的ACK。如果socket出现问题,RST包被反馈回来。在RST包返回之时,如果send()还没有把数据全部放入内核或者发送出去,那么send()返回-1,errno被置错误值;如果RST包返回之时,send()已经返回,那么RST导致的错误会在下一次send()或者recv()调用的时候被立即返回。
    场景3完全说明send()只要完成拷贝就成功返回,如果发送数据的过程中出现各种错误,下一次send()或者recv()调用的时候被立即返回。

    概念上容易疑惑的地方

    1. TCP协议本身是为了保证可靠传输,并不等于应用程序用tcp发送数据就一定是可靠的,必须要容错;
    2. send()和recv()没有固定的对应关系,不定数目的send()可以触发不定数目的recv(),这话不专业,但是还是必须说一下,初学者容易疑惑;
    3. 关键点,send()只负责拷贝,拷贝到内核就返回,我通篇在说拷贝完返回,很多文章中说send()在成功发送数据后返回,成功发送是说发出去的东西被ACK确认过。send()只拷贝,不会等ACK;
    4. 此次send()调用所触发的程序错误,可能会在本次返回,也可能在下次调用网络IO函数的时候被返回

     

    实际上理解了阻塞式的,就能理解非阻塞的。

    转载地址:http://blog.chinaunix.net/uid-29075379-id-3921527.html  一个大牛写的博客,受教了!

  • 相关阅读:
    jQuery EasyUI API 中文文档 可调整尺寸
    jQuery EasyUI API 中文文档 链接按钮(LinkButton)
    jQuery EasyUI API 中文文档 手风琴(Accordion)
    jQuery EasyUI API 中文文档 表单(Form)
    jQuery EasyUI API 中文文档 组合(Combo)
    jQuery EasyUI API 中文文档 布局(Layout)
    jQuery EasyUI API 中文文档 拆分按钮(SplitButton)
    jQuery EasyUI API 中文文档 菜单按钮(MenuButton)
    jQuery EasyUI API 中文文档 搜索框
    jQuery EasyUI API 中文文档 验证框(ValidateBox)
  • 原文地址:https://www.cnblogs.com/ralap7/p/9180810.html
Copyright © 2011-2022 走看看