zoukankan      html  css  js  c++  java
  • BZOJ1977 [BeiJing2010组队]次小生成树 Tree

    恩,归类上来讲的话。。。是一道非常好的noip题。。。只不过嘛、、、(此处省略100字)

    然后将如何做:

    首先Kruskal求出最小生成树。

    我们其实可以发现严格的次小生成树不可能在MST上改两条边 <=> 只能改一条边。

    那么如何改呢?

    每次在MST中加入一条非树边,即不在MST的边,那么会形成一个环,只要找到换上的严格小于当前边权的最大值,删之,就形成了次小生成树的候选。

    由Kruskal的算法保证加入的边权一定是环上最大的,因此我们要记录树链上的最大值和次大值(因为是严格小于)

    而记录的方法就是倍增。。。noip难度。。。T T

    对每条非树边都做一次即可。

    复杂度大概是O(m * logm + n * logn + (m - n) * logn)

      1 /**************************************************************
      2     Problem: 1977
      3     User: rausen
      4     Language: C++
      5     Result: Accepted
      6     Time:1740 ms
      7     Memory:32628 kb
      8 ****************************************************************/
      9  
     10 #include <cstdio>
     11 #include <algorithm>
     12  
     13 using namespace std;
     14 typedef long long ll;
     15 const int N = 100001;
     16 const int M = 300001;
     17 struct data{
     18     int x, y, v;
     19     bool selected;
     20 }a[M];
     21 struct edge{
     22     int next, to ,v;
     23 }e[N * 2];
     24 struct tree_node{
     25     int dep, fa[17], d1[17], d2[17];
     26 }tr[N];
     27 inline bool operator < (const data a, const data b){
     28     return a.v < b.v;
     29 }
     30  
     31 int n, m, cnt, tot, del = 1e9;
     32 int first[N], fa[N];
     33 ll ans;
     34  
     35 inline int read(){
     36     int x = 0, sgn = 1;
     37     char ch = getchar();
     38     while (ch < '0' || ch > '9'){
     39         if (ch == '-') sgn = -1;
     40         ch = getchar();
     41     }
     42     while (ch >= '0' && ch <= '9'){
     43         x = x * 10 + ch - '0';
     44         ch = getchar();
     45     }
     46     return sgn * x;
     47 }
     48  
     49 inline void add_edge(int x, int y, int z){
     50     e[++tot].next = first[x], first[x] = tot;
     51     e[tot].to = y, e[tot].v = z;
     52 }
     53  
     54 void add_Edges(int X, int Y, int Z){
     55     add_edge(X, Y, Z);
     56     add_edge(Y, X, Z);
     57 }
     58  
     59 int find_fa(int x){
     60     return x == fa[x] ? x : fa[x] = find_fa(fa[x]);
     61 }
     62  
     63 void dfs(int p){
     64     int i, x, y, FA;
     65     for (i = 1; i <= 16; ++i){
     66         if (tr[p].dep < (1 << i)) break;
     67         FA = tr[p].fa[i - 1];
     68         tr[p].fa[i] = tr[FA].fa[i - 1];
     69         tr[p].d1[i] = max(tr[p].d1[i - 1], tr[FA].d1[i - 1]);
     70         if (tr[p].d1[i - 1] == tr[FA].d1[i - 1])
     71             tr[p].d2[i] = max(tr[p].d2[i - 1], tr[FA].d2[i - 1]);
     72         else {
     73             tr[p].d2[i] = min(tr[p].d1[i - 1], tr[FA].d1[i - 1]);
     74             tr[p].d2[i] = max(tr[p].d2[i - 1], tr[p].d2[i]);
     75             tr[p].d2[i] = max(tr[p].d2[i], tr[FA].d2[i - 1]);
     76         }
     77     }
     78     for (x = first[p]; x; x = e[x].next)
     79         if ((y = e[x].to) != tr[p].fa[0]){
     80             tr[y].fa[0] = p, tr[y].d1[0] = e[x].v, tr[y].dep = tr[p].dep + 1;
     81             dfs(y);
     82         }
     83 }
     84  
     85 inline int lca(int x, int y){
     86     if (tr[x].dep < tr[y].dep) swap(x, y);
     87     int tmp = tr[x].dep - tr[y].dep, i;
     88     for (i = 0; i <= 16; ++i)
     89         if ((1 << i) & tmp) x = tr[x].fa[i];
     90     for (i = 16; i >= 0; --i)
     91         if (tr[x].fa[i] != tr[y].fa[i])
     92             x = tr[x].fa[i], y = tr[y].fa[i];
     93     return x == y ? x : tr[x].fa[0];
     94 }
     95  
     96 void calc(int x, int f, int v){
     97     int mx1 = 0, mx2 = 0, tmp = tr[x].dep - tr[f].dep, i;
     98     for (i = 0; i <= 16; ++i)
     99         if ((1 << i) & tmp){
    100             if (tr[x].d1[i] > mx1)
    101                 mx2 = mx1, mx1 = tr[x].d1[i];
    102             mx2 = max(mx2, tr[x].d2[i]);
    103             x = tr[x].fa[i];
    104         }
    105     del = min(del, mx1 == v ? v - mx2 : v - mx1);
    106 }
    107  
    108 void work(int t, int v){
    109     int x = a[t].x, y = a[t].y, f = lca(x, y);
    110     calc(x, f, v);
    111     calc(y, f, v);
    112 }
    113  
    114 int main(){
    115     n = read(), m = read();
    116     int i, f1, f2, TOT = 0;
    117     for (i = 1; i <= m; ++i)
    118         a[i].x = read(), a[i].y = read(), a[i].v = read();
    119     for (i = 1; i <= n; ++i)
    120         fa[i] = i;
    121     sort(a + 1, a + m + 1);
    122     for (i = 1; i <= m; ++i)
    123         if ((f1 = find_fa(a[i].x)) != (f2 = find_fa(a[i].y))){
    124             fa[f1] = f2;
    125             ans += a[i].v;
    126             a[i].selected = 1;
    127             add_Edges(a[i].x, a[i].y, a[i].v);
    128             ++TOT;
    129             if (TOT == n - 1) break;
    130         }
    131     dfs(1);
    132     for (i = 1; i <= m; ++i)
    133         if (!a[i].selected)
    134             work(i, a[i].v);
    135     printf("%lld
    ", ans + del);
    136     return 0;
    137 }
    View Code
    By Xs酱~ 转载请说明 博客地址:http://www.cnblogs.com/rausen
  • 相关阅读:
    线程原理 创建方式
    Chapter17 【异常、线程】
    驱动
    java中Super到底是什么意思
    Java 8后的首个长期支持版本Java 11
    OpenJDK和JDK区别
    异常
    模拟斗地主洗牌发牌
    Debug追踪
    Python 垃圾回收机制详细
  • 原文地址:https://www.cnblogs.com/rausen/p/4066094.html
Copyright © 2011-2022 走看看