zoukankan      html  css  js  c++  java
  • BZOJ3434 [Wc2014]时空穿梭

    摔电脑摔电脑!JZP业界毒瘤!

    400题纪念~哇终于上400了的说!!!好不容易欸!

    题解什么的还是Orz iwtwiioi

    我求组合数的方法明明是O(n)的,为什么这么慢!!!令人报警!

    喂,话说这题的重点不在求组合数上面吧。。。

      1 /**************************************************************
      2     Problem: 3434
      3     User: rausen
      4     Language: C++
      5     Result: Accepted
      6     Time:6888 ms
      7     Memory:140824 kb
      8 ****************************************************************/
      9  
     10 #include <cstdio>
     11 #include <cstring>
     12 #include <algorithm>
     13  
     14 using namespace std;
     15 const int N = 100005;
     16 const int mod = 10007;
     17 const int Tt = 1005;
     18  
     19 int g[21][N], f[21][15][N];
     20 int a[15], p[N], cnt, u[N], mx, mn;
     21 int n[Tt], c[Tt], m[Tt][15];
     22 int C[N][20];
     23 int ans;
     24 bool vis[N];
     25  
     26 inline int read() {
     27   int x = 0, sgn = 1;
     28   char ch = getchar();
     29   while (ch < '0' || '9' < ch) {
     30     if (ch == '-') sgn = -1;
     31     ch = getchar();
     32   }
     33   while ('0' <= ch && ch <= '9') {
     34     x = x * 10 + ch - '0';
     35     ch = getchar();
     36   }
     37   return sgn * x;
     38 }
     39  
     40 int pow(int x, int y) {
     41   int res = 1;
     42   while (y) {
     43     if (y & 1) (res *= x) %= mod;
     44     (x *= x) %= mod;
     45     y >>= 1;
     46   }
     47   return res;
     48 }
     49  
     50 void get_f(int N) {
     51   int i, j, k, l;
     52   for (u[1] = 1, i = 2; i <= N; ++i) {
     53     if (!vis[i])
     54       p[++cnt] = i, u[i] = -1;
     55     for (j = 1; j <= cnt; ++j) {
     56       if ((k = i * p[j]) > N) break;
     57       vis[k] = 1;
     58       if (i % p[j] == 0) {
     59     u[k] = 0;
     60     break;
     61       }
     62       u[k] = -u[i];
     63     }
     64   }
     65   for (C[0][0] = i = 1; i <= N; ++i)
     66     for (C[i][0] = j = 1; j < 19; ++j)
     67       C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
     68    
     69   for (l = 2; l <= 20; ++l)
     70     for (i = 1; i <= N; ++i)
     71       for (j = i, k = 1; j <= N; j += i, ++k)
     72     (g[l][j] += C[i - 1][l - 2] * u[k]) %= mod;
     73   for (i = 1; i <= N; ++i)
     74     for (l = 2; l <= 20; ++l) {
     75       k = 1;
     76       for (j = 1; j <= 12; ++j) {
     77     f[l][j][i] = (f[l][j][i - 1] + k * g[l][i]) % mod;
     78     (k *= i) %= mod;
     79       }
     80     }
     81 }
     82  
     83 void calc(int i, int x) {
     84   memset(a, 0, sizeof(a));
     85   a[1] = 1;
     86   int d1, d2, t, j, k;
     87   for (k = 1; k <= n[i]; ++k) {
     88     t = m[i][k] / x;
     89     d1 = (1ll * t * m[i][k]) % mod;
     90     d2 = (1ll * t * (t + 1) >> 1) % mod;
     91     for (j = n[i] + 1; j > 1; --j)
     92       a[j] =(a[j] * d1 - a[j - 1] * d2) % mod;
     93     (a[1] *= d1) %= mod;
     94   }
     95 }
     96  
     97 int main() {
     98   int i, j, k, l, T;
     99   T = read();
    100   for (i = 1; i <= T; ++i) {
    101     n[i] = read(), c[i] = read();
    102     for (j = 1; j <= n[i]; ++j)
    103       m[i][j] = read(), mx = max(mx, m[i][j]);
    104   }
    105   get_f(mx);
    106  
    107   for (i = 1; i <= T; ++i) {
    108     ans = 0;
    109     for (mn = m[i][1], j = 2; j <= n[i]; ++j)
    110       mn = min(mn, m[i][j]);
    111     for (j = 1; j <= mn; j = k + 1) {
    112       k = mn + 1;
    113       for (l = 1; l <= n[i]; ++l)
    114     k = min(k, m[i][l] / (m[i][l] / j));
    115       calc(i, j);
    116       for (l = 1; l <= n[i] + 1; ++l)
    117     (ans += a[l] * (f[c[i]][l][k] - f[c[i]][l][j - 1])) %= mod;
    118     }
    119     ans %= mod;
    120     printf("%d
    ", (ans += mod) %= mod);
    121   }
    122   return 0;
    123 }
    View Code(递推求组合数)
      1 /**************************************************************
      2     Problem: 3434
      3     User: rausen
      4     Language: C++
      5     Result: Accepted
      6     Time:9596 ms
      7     Memory:134184 kb
      8 ****************************************************************/
      9  
     10 #include <cstdio>
     11 #include <cstring>
     12 #include <algorithm>
     13   
     14 using namespace std;
     15 const int N = 100005;
     16 const int mod = 10007;
     17 const int Tt = 1005;
     18   
     19 int g[21][N], f[21][15][N];
     20 int a[15], p[N], cnt, u[N], mx, mn;
     21 int n[Tt], c[Tt], m[Tt][15];
     22 int fac[N], faci[N], sum[N];
     23 int ans;
     24 bool vis[N];
     25   
     26 inline int read() {
     27   int x = 0, sgn = 1;
     28   char ch = getchar();
     29   while (ch < '0' || '9' < ch) {
     30     if (ch == '-') sgn = -1;
     31     ch = getchar();
     32   }
     33   while ('0' <= ch && ch <= '9') {
     34     x = x * 10 + ch - '0';
     35     ch = getchar();
     36   }
     37   return sgn * x;
     38 }
     39   
     40 int pow(int x, int y) {
     41   int res = 1;
     42   while (y) {
     43     if (y & 1) (res *= x) %= mod;
     44     (x *= x) %= mod;
     45     y >>= 1;
     46   }
     47   return res;
     48 }
     49   
     50 inline int C(int x, int y) {
     51   if (y == 0) return 1;
     52   if (x < y) return 0;
     53   if (sum[x] != sum[y] + sum[x - y]) return 0;
     54   return fac[x] * faci[y] % mod * faci[x - y] % mod;
     55 }
     56   
     57 void get_f(int N) {
     58   int i, j, k, l;
     59   for (u[1] = 1, i = 2; i <= N; ++i) {
     60     if (!vis[i])
     61       p[++cnt] = i, u[i] = -1;
     62     for (j = 1; j <= cnt; ++j) {
     63       if ((k = i * p[j]) > N) break;
     64       vis[k] = 1;
     65       if (i % p[j] == 0) {
     66     u[k] = 0;
     67     break;
     68       }
     69       u[k] = -u[i];
     70     }
     71   }
     72   fac[0] = faci[0] = 1;
     73   for (fac[1] = 1, i = 2; i <= N; ++i)
     74     if (i % mod == 0) {
     75       sum[i] = sum[i - 1] + 1;
     76       fac[i] = fac[i - 1] * (i / mod) % mod;
     77     } else {
     78       sum[i] = sum[i - 1];
     79       fac[i] = fac[i - 1] * i % mod;
     80     }
     81   for (faci[N] = pow(fac[N], mod - 2),i = N - 1; i; --i)
     82     if ((i + 1) % mod == 0)
     83       faci[i] = faci[i + 1] * ((i + 1) / mod) % mod;
     84     else faci[i] = faci[i + 1] * (i + 1) % mod;
     85   
     86   for (l = 2; l <= 20; ++l)
     87     for (i = 1; i <= N; ++i)
     88       for (j = i, k = 1; j <= N; j += i, ++k)
     89     (g[l][j] += C(i - 1, l - 2) * u[k]) %= mod;
     90   for (i = 1; i <= N; ++i)
     91     for (l = 2; l <= 20; ++l) {
     92       k = 1;
     93       for (j = 1; j <= 12; ++j) {
     94     f[l][j][i] = (f[l][j][i - 1] + k * g[l][i]) % mod;
     95     (k *= i) %= mod;
     96       }
     97     }
     98 }
     99   
    100 void calc(int i, int x) {
    101   memset(a, 0, sizeof(a));
    102   a[1] = 1;
    103   int d1, d2, t, j, k;
    104   for (k = 1; k <= n[i]; ++k) {
    105     t = m[i][k] / x;
    106     d1 = (1ll * t * m[i][k]) % mod;
    107     d2 = (1ll * t * (t + 1) >> 1) % mod;
    108     for (j = n[i] + 1; j > 1; --j)
    109       a[j] =(a[j] * d1 - a[j - 1] * d2) % mod;
    110     (a[1] *= d1) %= mod;
    111   }
    112 }
    113   
    114 int main() {
    115   int i, j, k, l, T;
    116   T = read();
    117   for (i = 1; i <= T; ++i) {
    118     n[i] = read(), c[i] = read();
    119     for (j = 1; j <= n[i]; ++j)
    120       m[i][j] = read(), mx = max(mx, m[i][j]);
    121   }
    122   get_f(mx);
    123   
    124   for (i = 1; i <= T; ++i) {
    125     ans = 0;
    126     for (mn = m[i][1], j = 2; j <= n[i]; ++j)
    127       mn = min(mn, m[i][j]);
    128     for (j = 1; j <= mn; j = k + 1) {
    129       k = mn + 1;
    130       for (l = 1; l <= n[i]; ++l)
    131     k = min(k, m[i][l] / (m[i][l] / j));
    132       calc(i, j);
    133       for (l = 1; l <= n[i] + 1; ++l)
    134     (ans += a[l] * (f[c[i]][l][k] - f[c[i]][l][j - 1])) %= mod;
    135     }
    136     ans %= mod;
    137     printf("%d
    ", (ans += mod) %= mod);
    138   }
    139   return 0;
    140 }
    View Code(奇怪的组合数求法)

    (p.s. 关于那种空间较小的求组合数的方法为什么慢了3秒我也是无言以对。。。)

    By Xs酱~ 转载请说明 博客地址:http://www.cnblogs.com/rausen
  • 相关阅读:
    XSS挑战之旅平台通关练习
    Vulnhub:view2akill 靶机练习
    Vulnhub:Five86-2-靶机练习
    Vulnhub:Sumo靶机练习
    vulnhub_DMV:1 靶机练习
    vulnhub:Geisha:1 靶机练习
    VulnHub之Aiweb1练习过程
    Linux学习笔记之二
    Linux sudo(CVE-2019-14287)漏洞复现过程
    DoraBox漏洞测试环境搭建和测试过程
  • 原文地址:https://www.cnblogs.com/rausen/p/4294603.html
Copyright © 2011-2022 走看看