zoukankan      html  css  js  c++  java
  • 详解python实现FPTREE进行关联规则挖掘(带有FP树显示功能)附源代码下载(3)

    详解python实现FP-TREE进行关联规则挖掘(带有FP树显示功能)附源代码下载(3)

    上一节简单讲了下FP树的生成,在这一节我将描述FP树的挖掘过程.

    首先我们回顾一下要挖掘的特征项及样本空间:

    items=('chips','eggs','bread','milk','beer','popcorn','butter')
    sample=[
        ['milk','eggs','bread','chips'],
        ['eggs','popcorn','chips','beer'],
        ['eggs','bread','chips'],
        ['milk','eggs','bread','popcorn','chips','beer'],
        ['milk','bread','beer'],
        ['eggs','bread','beer'],
        ['milk','bread','chips'],
        ['milk','eggs','bread','butter','chips'],
        ['milk','eggs','butter','chips']
    ]
    由于要寻找的关联规则的最小支持度为3,所以butter和popcorn两个特征项就可以首先被忽略掉了,因为它们的支持度都只有2。

    根据挖掘的规则,挖掘将从支持度最接近3的特征项开始,即本例中的beer,它的支持度为4.


    从图中可以看到beer的节点数为4,于是它有4个条件模式基(CPB):

    {eggs,bread,chips:1}

    {eggs,bread:1}

    {eggs,chips:1}

    {bread,milk:1}

    生成的FP子树如下图:


    (注意:在源代码中,我为milk的FP子树单独生成了一个对象,其实在实际使用中FP树会占用很大的内从空间,所以FP子树一般会利用FP树而不是重新生成,一个可行的办法是将FP树的节点支持度数表示为一个字典,例如{root:7,milk:3}表示该节点在FP树中支持度为7,而在特征项milk的FP子树中支持度为3)


    得到FP子树后要进行两步操作:

    第一步:将该子树中所有支持度大于3的特征项与milk作并集,得到满足条件的二项集:

    (eggs,milk )

    (bread,milk )  

    它们的支持度都为3。


    第二步:判断这颗子树是否有必要进一步挖掘,这是难点,也是优化算法的一个方向。

    判断的结果有三种:

    1. 该树没有任何一个特征项的支持度 >= 3,那么等同于空树,就没有必要挖掘了。

    2. 该树是一棵单路径的树。

    3. 该树是一棵多路径的树。


    情况2和情况3是怎么回事,又该如何处理,请看下节


    转载请注明出处:http://blog.csdn.net/rav009/article/details/8976421

  • 相关阅读:
    HTTP协议
    UI- 不易记知识点汇总
    UI- 五种手势识别总结
    idea整合 springboot jsp mybatis
    xml和map互转工具类
    ajax请求案例
    java加密工具类,可设置对应的加解密key
    ajax请求正常,返回json格式,后台没问题,浏览器500
    通过工具SecureCRTPortable将项目部署到服务器上
    修改idea自动生成在C盘的文件路径,以免电脑越用越卡
  • 原文地址:https://www.cnblogs.com/rav009/p/5131158.html
Copyright © 2011-2022 走看看