战略游戏
题目描述
Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。
他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。
注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。
请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵.
输入输出格式
输入格式:
第一行 N,表示树中结点的数目。
第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连)。
接下来k个数,分别是每条边的另一个结点标号r1,r2,...,rk。
对于一个(n(0<n<=1500))个结点的树,结点标号在0到n-1之间,在输入数据中每条边只出现一次。
输出格式:
输出文件仅包含一个数,为所求的最少的士兵数目。
例如,对于如下图所示的树:
0
1 2 3
答案为1(只要一个士兵在结点1上)。
输入输出样例
输入样例#1:
4
0 1 1
1 2 2 3
2 0
3 0
输出样例#1:
1
Solution
树形结构!!!
因为是一棵树,所以对于每个节点,我们都把它当成根节点处理( o)树形dp!!!
注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。
定义状态dp[u][0/1]表示u这个节点不放/放士兵
根据题意,如果当前节点不放置士兵,那么它的子节点必须全部放置士兵,因为要满足士兵可以看到所有的边,所以
[dp[u][0]+=dp[to][1]
]
其中to是u的子节点
如果当前节点放置士兵,它的子节点选不选已经不重要了(因为树形dp自下而上,上面的节点不需要考虑),所以
[dp[u][1]+=min(dp[to][0],dp[to][1])
]
Code
#include<bits/stdc++.h>
#define rg register
#define il inline
#define Min(a,b) (a)<(b)?(a):(b)
#define Max(a,b) (a)>(b)?(a):(b)
using namespace std;
const int N=1510;
void in(int &ans) {
ans=0; char i=getchar();
while(i<'0' || i>'9') i=getchar();
while(i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+i-'0',i=getchar();
}
int n,cur;
int to[N<<1],nex[N<<1],head[N];
int dp[N][2];
il void add(int a,int b) {
to[++cur]=b;
nex[cur]=head[a];
head[a]=cur;
}
il void read() {
for(rg int i=1;i<=n;i++) {
int x,k,y; in(x),in(k);
for(rg int j=1;j<=k;j++) {
in(y); add(x,y),add(y,x);
}
}
}
void dfs(int u,int fa) {
dp[u][1]=1,dp[u][0]=0;
for(rg int i=head[u];i;i=nex[i]) {
if(to[i]==fa) continue;
dfs(to[i],u);
dp[u][0]+=dp[to[i]][1];
dp[u][1]+=Min(dp[to[i]][1],dp[to[i]][0]);
}
}
int main()
{
in(n); read(); dfs(0,-1);
printf("%d
",Min(dp[0][0],dp[0][1]));
return 0;
}