zoukankan      html  css  js  c++  java
  • 算法【二分查找】

    二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

    查找过程

    首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

    算法要求

    1.必须采用顺序存储结构。

    2.必须按关键字大小有序排列

    Python代码

    def findValue(alist, item):
        left = 0  # 序列中第一个元素下标
        right = len(alist) - 1  # 最后一个元素下标
        find = False
    
        while left <= right:
            mid = (left + right) // 2  # 中间元素下标
            if item < alist[mid]:  # 查找的值小于中间元素,查找的值存在于中间元素左侧
                right = mid - 1
            elif item > alist[mid]:  # 大于中间元素,在中间元素右侧
                left = mid + 1
            else:
                find = True
                break
        return find
    
    alist = [1, 2, 3, 4, 6]
    print(findValue(alist, 3))
    
    >>>
    True
    

    算法复杂度

    二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.

    时间复杂度即是while循环的次数。

    总共有n个元素,

    渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数

    由于你n/2^k取整后>=1

    即令n/2^k=1

    可得k=log2n,(是以2为底,n的对数)

    所以时间复杂度可以表示O(h)=O(log2n)

  • 相关阅读:
    在.netframework 4.5.2项目上集成identityserver4的登录功能
    Elasticsearch学习笔记之—测试查询分词器的分词结果
    asp.net core mysql 错误提示:Out of memory (Needed***
    Elasticsearch学习笔记之— excludes的高级用法
    正则表达式(.*?)
    WPF里实现imageButton的步骤
    Elasticsearch学习笔记之—wildcard、fuzzy、regexp、prefix
    Elasticsearch学习笔记之—数据范围查询
    工具小方法
    lambda表达式
  • 原文地址:https://www.cnblogs.com/remixnameless/p/13326352.html
Copyright © 2011-2022 走看看