我们之前提出了三个经典的问题,他们分别是:
- 二分类问题(电影评论好坏倾向性判断)
- 多分类问题(将新闻按照主题分类)
- 回归问题(根据房地产数据估算房地产价格)
我们解决了前两个问题,今天我们解决第三个问题,回归问题。
不管是二分类问题还是多分类问题,归结起来都是分类问题,而回归问题不一样,他是一种回归问题,回归问题的训练结果不是离散的情况,而是连续的情况,例如预测明天的气温、全年降水量等。
这里我们引入的依旧是 Keras 内置的实际问题和数据集:预测波斯顿的房价。针对波士顿的不同房屋,我们给出对每个房屋我们给出十三个数据指标,包括房间数、犯罪率和高速公路可达性等,他们的取值范围不一致,0-1、1-12 或 1-100 等,训练的目标是一个连续的值——房屋的价格。具体的步骤如下分别说明:
-
从数据集中读取数据我们已经很熟悉了,但是我们观察数据会发现,这些数据的取值范围差别太大了,这会导致网络训练过程的失真,因此比较好的办法是我们先对数据进行预处理,预处理的方法是:(原数据 - 平均值) / 标准差,这就相当于对数据进行标准化,标准化后的数据平均值为 0,标准差为 1。mean 和 std 方法分别是求平均值和计算标准差。
-
因为我们这一次的数据量只有五百多个,因此我们采用较小的网络,两个隐藏层。这里我们需要注意的一点是数据量少,训练容易产生过拟合,小型网络更适合。
-
我们仍然可以用之前的方法进行训练集与反馈集的划分,但问题是由于我们的数据量太小了,因此具体如何划分反馈集过于随机,这会对最后的结果有很大的影响,因此我们采用的是 K 折交叉验证的方法。K 折交叉验证的含义是我们将数据集分为 K 份,每次从这 K 份中选择一份当做验证集,进行 K 次互相独立的训练,最后取 K 次训练的平均值。具体如图:
-
我们画出训练 500 轮的图,可以看到最开始的一些数据不是好数据,我们把他们去掉,然后再绘制一张图,如下别是两次绘制的结果,又可以看到之前出现的问题——过拟合了,因此我们调整循环次数为 80 次
-
修改后的训练网络是一个可以接受的网络,我们在测试集上进行验证,整体基本可以达到要求。
到此,我们已经分别讨论文章开始提到的三个问题(包括前两篇文章),二分类问题、多分类问题和回归问题,这其中我们也遇到和解决了一些问题,下面总结如下:
-
神经网络对数据的处理大多都需要转化为对数字的处理,因此对于文本等内容需要进行预处理;
-
对于数据集的大小、特征的多少和特征值之间的差别等,考虑数据网络的大小,层数、数据的标准化和训练的迭代次数,此类问题往往也需要画图去观察和判断,最后需要根据调整的参数最终得到比较合适的网络模型;
-
训练迭代次数不够和过拟合都是经常遇到的问题,都是不够好的训练网络,实际问题中需要对两种情况都进行评估和调整;
-
损失函数和反馈函数的选取,需要考虑实际问题,根据数据的要求,进行选择;
接下来的文章,将进一步针对上面提到的这些问题进行更加系统的分析和研究。
#!/usr/bin/env python3
import time
import numpy as np
from keras import layers
from keras import models
from keras.datasets import boston_housing
def housing():
global train_data
(train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
# (404, 13)
# print(train_data.shape)
# (102, 13)
# print(test_data.shape)
# [15.2 42.3 50. 21.1 17.7 18.5 11.3 ... 19.4 19.4 29.1]
# print(train_targets)
# 平均值
mean = train_data.mean(axis=0)
train_data -= mean
# 标准差
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
k = 4
num_val_samples = len(train_data) // k
num_epochs = 500
all_mae_histories = []
for i in range(k):
print('processing fold #', i)
val_data = train_data[i * num_val_samples: (i + 1) * num_val_samples]
val_targets = train_targets[i * num_val_samples: (i + 1) * num_val_samples]
partial_train_data = np.concatenate(
[train_data[:i * num_val_samples],
train_data[(i + 1) * num_val_samples:]],
axis=0)
partial_train_targets = np.concatenate(
[train_targets[:i * num_val_samples],
train_targets[(i + 1) * num_val_samples:]],
axis=0)
model = build_model()
model.fit(train_data, train_targets,
epochs=80, batch_size=16, verbose=0)
test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)
# history = model.fit(partial_train_data, partial_train_targets,
# validation_data=(val_data, val_targets),
# epochs=num_epochs, batch_size=1, verbose=0)
# mae_history = history.history['val_mean_absolute_error']
# all_mae_histories.append(mae_history)
# average_mae_history = [
# np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
#
# plt.plot(range(1, len(average_mae_history) + 1), average_mae_history)
# plt.xlabel('Epochs')
# plt.ylabel('Validation MAE')
# plt.show()
#
# smooth_mae_history = smooth_curve(average_mae_history[10:])
# plt.plot(range(1, len(smooth_mae_history) + 1), smooth_mae_history)
# plt.xlabel('Epochs')
# plt.ylabel('Validation MAE')
# plt.show()
def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu',
input_shape=(train_data.shape[1],)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
return model
def smooth_curve(points, factor=0.9):
smoothed_points = []
for point in points:
if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))
else:
smoothed_points.append(point)
return smoothed_points
def smooth_curve(points, factor=0.9):
smoothed_points = []
for point in points:
if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))
else:
smoothed_points.append(point)
return smoothed_points
if __name__ == "__main__":
time_start = time.time()
housing()
time_end = time.time()
print('Time Used: ', time_end - time_start)