zoukankan      html  css  js  c++  java
  • 第七次实践作业16组

    第七次实践作业

    (1) 在树莓派中安装opencv库

    准备工作

    • 安装依赖
    sudo apt-get update && sudo apt-get upgrade &&
    sudo apt-get install build-essential cmake pkg-config &&
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev &&
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev &&
    sudo apt-get install libxvidcore-dev libx264-dev &&
    sudo apt-get install libgtk2.0-dev libgtk-3-dev &&
    sudo apt-get install libatlas-base-dev gfortran &&
    sudo apt-get install python2.7-dev python3-dev
    

    偶尔有几个卡壳的就加上--fix-missing再执行几次

    • 下载opencv源码
    cd ~
    wget -O opencv.zip https://github.com/Itseez/opencv/archive/4.1.2.zip
    unzip opencv.zip
    wget -O opencv_contrib.zip https://github.com/Itseez/opencv_contrib/archive/4.1.2.zip
    unzip opencv_contrib.zip
    
    • 安装pip
    wget https://bootstrap.pypa.io/get-pip.py
    sudo python get-pip.py
    sudo python3 get-pip.py
    
    • 安装python虚拟机
    sudo pip install virtualenv virtualenvwrapper
    sudo rm -rf ~/.cache/pip
    
    • 配置~/.profile ,添加如下,并使用source ~/.profile生效
    export WORKON_HOME=$HOME/.virtualenvs
    export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
    export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv
    source /usr/local/bin/virtualenvwrapper.sh
    export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin
    
    • 使用Python3安装虚拟机
     mkvirtualenv cv -p python3
    
    • 进入虚拟机
    source ~/.profile && workon cv
    

    • 安装numpy
    pip install numpy
    

    编译opencv

    cd ~/opencv-4.1.2/
    mkdir build
    cd build
    cmake -D CMAKE_BUILD_TYPE=RELEASE 
        -D CMAKE_INSTALL_PREFIX=/usr/local 
        -D INSTALL_PYTHON_EXAMPLES=ON 
        -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.1.2/modules 
        -D BUILD_EXAMPLES=ON ..
    
    • 增大交换区内存到1024

    • 重启swap服务并开始编译

      sudo /etc/init.d/dphys-swapfile stop && sudo /etc/init.d/dphys-swapfile start
      make -j4
      
    • 编译完成

    安装opencv

    sudo make install
    sudo ldconfig
    
    • 创建软连接,将opencv的包放进当前虚拟机,命名为cv2

    • 验证安装

    • 退出python虚拟机命令

      deactivate
      

    (2) 使用opencv和python控制树莓派的摄像头

    • 安装picamera

      #cv环境下
      source ~/.profile
      workon cv
      pip install "picamera[array]"
      

    • 拍张照片

      # import the necessary packages
      from picamera.array import PiRGBArray
      from picamera import PiCamera
      import time
      import cv2
      # initialize the camera and grab a reference to the raw camera capture
      camera = PiCamera()
      rawCapture = PiRGBArray(camera)
      # allow the camera to warmup
      time.sleep(1)
      # grab an image from the camera
      camera.capture(rawCapture, format="bgr")
      image = rawCapture.array
      # display the image on screen and wait for a keypress
      cv2.imshow("Image", image)
      cv2.waitKey(0)
      

    (3) 利用树莓派的摄像头实现人脸识别

    • 安装所需库

      pip install dlib &&
      pip install face_recognition
      
    • 同目录下放置一张用于识别test.jpg

    facerec_on_raspberry_pi.py

    # This is a demo of running face recognition on a Raspberry Pi.
    # This program will print out the names of anyone it recognizes to the console.
    # To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
    # the picamera[array] module installed.
    # You can follow this installation instructions to get your RPi set up:
    # https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
    
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    image = face_recognition.load_image_file("test.jpg")
    face_encoding = face_recognition.face_encodings(image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
    
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
    
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
    
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Trump"
            print("I see someone named {}!".format(name))
    
    • 识别成功

    (因为这个代码的识别度太低,unknow实例识别不了,只要认到人就是trump,甚至是组长本人(现在就去上任),甚至换成黑人都不行,所以没有识别不成功的图片)

    因为trump在我们这的识别效果不佳,并且队长是死宅,所以我们更换了测试样例为zhaiteng.jpg和xiye.jpg。图片如下:

    zhaiteng.jpg

    xiye.jpg

    facerec_from_webcam_faster.py

    代码如下:

    import face_recognition
    import cv2
    import numpy as np
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    xiye_image = face_recognition.load_image_file("xiye.jpg")
    xiye_face_encoding = face_recognition.face_encodings(xiye_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    zhaiteng_image = face_recognition.load_image_file("zhaiteng.jpg")
    zhaiteng_face_encoding = face_recognition.face_encodings(zhaiteng_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        xiye_face_encoding,
        zhaiteng_face_encoding
    ]
    
    known_face_names = [
        "xiye",
        "zhaiteng"
    ]
    
    
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    
    process_this_frame = True
    
    while True:
    
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
    
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    

    识别效果如下(名字是qiye是因为第一次代码里面写错了):

    (4) 结合微服务的进阶任务

    • 准备操作

      #退出python虚拟机
      deactivate
      #脚本安装docker
      sudo curl -sSL https://get.docker.com | sh
      #填加用户到docker组
      sudo usermod -aG docker pi
      #重新登陆以用户组生效
      exit && ssh pi@raspiberry
      #验证docker版本
      docker --version
      

    • 创建目录

    • 拉取arm可用docker镜像

      docker pull sixsq/opencv-python
      

    • 进入容器并安装所需库

      docker run -it [imageid] /bin/bash
      pip install "picamera[array]" dlib face_recognition
      
    • commit镜像

      docker commit [containerid] myopencv
      

    • 自定义镜像

      • Dockerfile

        FROM my-opencv
        
        MAINTAINER GROUP13
        
        RUN mkdir /myapp
        
        WORKDIR /myapp
        
        ENTRYPOINT ["python3"]
        
      • 生成镜像

        docker build -t myopencv_test1 .
        

    • 运行脚本

      docker run -it --rm --name my-running-py -v ${PWD}/workdir:/myapp --device=/dev/vchiq --device=/dev/video0 my-opencv-test isLeiJun.py
      

    • 环境准备

      • windows端安装XMing

      • 检测ssh配置文件中X11是否开启

        cat /etc/ssh/sshd_config
        

    • ssh客户端开启支持X11转发

    • 查看DISPLAY环境变量值

      printenv
      

    • 编辑启动脚本 run.sh

      xhost +
      docker run -it 
              --rm 
              -v ${PWD}/workdir:/myapp 
              --net=host 
              -v $HOME/.Xauthority:/root/.Xauthority 
              -e DISPLAY=:10.0 
              -e QT_X11_NO_MITSHM=1 
              --device=/dev/vchiq 
              --device=/dev/video0 
              --name my-running-py 
              my-opencv-test 
              recognition.py
      
    • 执行脚本sh run.sh

      效果和上面一样不展示了

    (5) 以小组为单位,发表一篇博客,记录遇到的问题和解决方法,提供小组成员名单以及在线协作的图片

    (1)踩过的坑

    编译opencv时遇到的问题 参考链接
    • fatal error: boostdesc_bgm.i: No such file or directory

      ​ 解决方法:下载这些文件放入文件夹中(可以wget或者手动下载放入)

      • cd ~/opencv-4.1.2/opencv_contrib-4.1.2/modules/xfeatures2d/src
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_lbgm.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_256.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_128.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_binboost_064.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm_hd.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm_bi.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/34e4206aef44d50e6bbcd0ab06354b52e7466d26/boostdesc_bgm.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_120.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_64.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_48.i
        wget https://raw.githubusercontent.com/opencv/opencv_3rdparty/fccf7cd6a4b12079f73bbfb21745f9babcd4eb1d/vgg_generated_80.i
        
    • fatal error: features2d/test/test_detectors_regression.impl.hpp: No such file or directory

      ​ 解决方法:

      • sudo cp -r ~/opencv-4.1.2/modules/features2d ~/opencv-4.1.2/build
        

    (2)小组成员名单、分工及贡献

    学号 姓名 分工
    031702623 蔡嘉懿 查阅资料及实际操作
    031702627 李至恒 解决问题及部分博客撰写
    031702632 林华伟 查阅资料及部分博客撰写

    (3)在线协作图片

    • 腾讯会议在线交流,由蔡嘉懿进行主要操作
  • 相关阅读:
    jsp <img src="“> src 相对路径的问题
    记一次Intellij-IDEA配置JDK1.8,支持Lambda新特性
    centOS6.5 查看 启动 关闭防火墙
    java设计模式之--工厂方法模式
    BlockingQueue之---ArrayBlockingQueue
    两个线程,一个为123456,一个为ABCDEF、交替打印出1A2B3C...
    JUC之---超好用的阻塞锁
    JUC之---读写锁
    java设计模式之--代理模式
    java设计模式之--线程安全的单例模式
  • 原文地址:https://www.cnblogs.com/replusone/p/13066664.html
Copyright © 2011-2022 走看看