zoukankan      html  css  js  c++  java
  • delay

    A Gentle Introduction to Deep Learning for Graphs

    tutorial introduction to Deep Learning for Graphs

    what's deep learning for Graph?

    abstract

    The paper takes a top-down view to the problem, introducing a generalized formulation of graph representation learning based on a local and iterative approachto structured information processing.

    • what does adj. top-down mean?
    • what is generalized formulation?
    • what does the whole sentence mean?

    It introduces the basic building blocks that can be combined to design novel and effective neural models for graphs.

    • in what way can it be combined to design neural models?
    • what's neural models for graphs?

    The methodological exposition is complemented by a discussion of interesting research challenges and applications in the field.

    • what's methodological exposition?
    • how is it complemented by discussion?

    introduction

    background

    1. graph is powerful
    2. require deep learning modelsthat can process graphs in an adaptive fashion.
    3. history:long-standing and consolidated history,rooting in the early nineties with seminal works on Recursive Neural Networks(RecNN) for tree structured data.....
    4. ???

    This paper takes pace from this historical perspective to provide agentleintroduction to the field of neural networks for graphs, also referred to as deeplearning for graphs in modern terminology

    purpose of this paper

    .....

    guidance

    Section 2

    we first provide a generalized formulation of the problem of representation learning in graphs, introducing and motivating the architecture roadmap that we will be following throughout the rest of the paper.
    We will focus, in particular, on approaches that deal with local and iterative processing of information.

    Section 3

    introduce the basic building blocks that can be assembled and combined to create modern deep learning architectures for graphs.
    In this context, we will introduce the concepts of graph convolutions as local neighborhood aggregation functions, the use of attention, sampling andpooling operators defined over graphs, and we will conclude with a discussionon aggregation functions that compute whole-structure embeddings.
    ???

    Section 4

    The final part of the paper surveys other related approaches andtasks (Section 5), and it discusses interesting research challenges (Section 6) andapplications (Section 7). We conclude the paper with some final considerationsand hints for future research directions.

    concepts and key words

    Convolutional Neural Networks
    卷积神经网络
    deep graph network
    DGNS
    深图网络
    DNGN
    DBGN
    DGGN

  • 相关阅读:
    mysql卸载
    Nginx配置Https(详细、完整)
    国产数据库
    win11系统安装全过程
    微星b460主板如何开启TPM2.0
    如何查看计算机是否开启TPM2.0
    c语言实现复制文件
    如何使用格式工厂把视频变小
    格式工厂合并视频和音频文件
    IDM下载B站视频多个文件,视频、音频分开如何处理
  • 原文地址:https://www.cnblogs.com/reshuffle/p/12445132.html
Copyright © 2011-2022 走看看