zoukankan      html  css  js  c++  java
  • Spark RDD Transformation 简单用例(一)

    map(func

    /**
    * Return a new RDD by applying a function to all elements of this RDD.
    */
    def map[U: ClassTag](f: T => U): RDD[U] 
    map(func) Return a new distributed dataset formed by passing each element of the source through a function func

    将原RDD中的每一个元素经过func函数映射为一个新的元素形成一个新的RDD。

    示例:

    其中sc.parallelize第二个参数标识RDD的分区数量

    val rdd = sc.parallelize(1 to 9,2)
    val rdd1=rdd.map(x=>x+1)
    scala> val rdd = sc.parallelize(1 to 9,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24
    
    scala> rdd.take(20)
    res3: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
    
    scala> val rdd1=rdd.map(x=>x+1)
    rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[4] at map at <console>:26
    
    scala> rdd1.take(20)
    res5: Array[Int] = Array(2, 3, 4, 5, 6, 7, 8, 9, 10)

    filter(func

    /**
    * Return a new RDD containing only the elements that satisfy a predicate.
    */

    def filter(f: T => Boolean): RDD[T]

    filter(func) Return a new dataset formed by selecting those elements of the source on which func returns true. 

    原RDD中通过func函数结果为true的元素转换成一个新的RDD。

    val rdd = sc.parallelize(1 to 9,2)
    val rdd1 = rdd.filter(_>=5)
    scala> val rdd = sc.parallelize(1 to 9,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[7] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.filter(_>=5)
    rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[8] at filter at <console>:26
    
    scala> rdd1.take(10)
    res13: Array[Int] = Array(5, 6, 7, 8, 9)

    flatMap(func)

    /**
    * Return a new RDD by first applying a function to all elements of this
    * RDD, and then flattening the results.
    */
    def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]
    flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item). 

    和map类似,但是每一个元素可能被映射为0个或多个元素(func函数应该返回一个Seq,而不是单个的元素);实际上就是先进行map,然后再进行一次平滑(flat)处理。

    val rdd = sc.parallelize(1 to 3,2)
    val rdd1 = rdd.flatMap( _ to 5)
    scala> val rdd = sc.parallelize(1 to 3,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.flatMap( _ to 5)
    rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[10] at flatMap at <console>:26
    
    scala> rdd1.take(100)
    res14: Array[Int] = Array(1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5)

    mapPartitions(func

    /**
    * Return a new RDD by applying a function to each partition of this RDD.
    *
    * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
    * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
    */
    def mapPartitions[U: ClassTag](
    f: Iterator[T] => Iterator[U],
    preservesPartitioning: Boolean = false): RDD[U]
    mapPartitions(func) Similar to map, but runs separately on each partition (block) of the RDD, so func must be of type Iterator<T> => Iterator<U> when running on an RDD of type T. 

    和map类似,该函数和map函数类似,只不过映射函数的参数由RDD中的每一个元素变成了RDD中每一个分区的迭代器。如果在映射的过程中需要频繁创建额外的对象,使用mapPartitions要比map高效的过。

    计算每一个partition中元素个数

    def countPartitionEle(it : Iterator[Int]) = {
        var result = List[Int]()
         var i = 0
         while(it.hasNext){
           i += 1
           it.next
         }
         result.::(i).iterator//::在列表开头增加元素i,元素i必须用小括号包含,然后创建一个迭代器
    }
    
    val rdd = sc.parallelize(1 to 10, 3)
    val rdd1 = rdd.mapPartitions(countPartitionEle(_))
    rdd1.take(10)
    scala> def countPartitionEle(it : Iterator[Int]) = {
         | var result = List[Int]()
         | var i = 0
         | while(it.hasNext){
         | i += 1
         | it.next
         | }
         | result.::(i).iterator
         | }
    countPartitionEle: (it: Iterator[Int])Iterator[Int]
    
    scala> val rdd = sc.parallelize(1 to 10, 3)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.mapPartitions(countPartitionEle(_))
    rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[7] at mapPartitions at <console>:30
    
    scala> rdd1.take(10)
    res8: Array[Int] = Array(3, 3, 4)

     mapPartitionsWithIndex(func

    /**
    * Return a new RDD by applying a function to each partition of this RDD, while tracking the index
    * of the original partition.
    *
    * `preservesPartitioning` indicates whether the input function preserves the partitioner, which
    * should be `false` unless this is a pair RDD and the input function doesn't modify the keys.
    */
    def mapPartitionsWithIndex[U: ClassTag](
    f: (Int, Iterator[T]) => Iterator[U],
    preservesPartitioning: Boolean = false): RDD[U]

    mapPartitionsWithIndex(func) Similar to mapPartitions, but also provides func with an integer value representing the index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U> when running on an RDD of type T. 

    和mapPartitions类似,也是针对每个分区处理,但是func函数需要两个入参,第一个表示partition分区索引,第二个入参表示每个分区的迭代器。

    def func(index :Int, it : Iterator[Int]) = {
        var result = List[String]()
         var i = ""
         while(it.hasNext){
           i += it.next + ","
         }
         result.::(i.dropRight(1) + " at partition "+index+".").iterator
    }
    
    val rdd = sc.parallelize(1 to 10, 3)
    val rdd1 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))
    rdd1.take(3)
    scala> def func(index :Int, it : Iterator[Int]) = {
         |     var result = List[String]()
         |      var i = ""
         |      while(it.hasNext){
         |        i += it.next + ","
         |      }
         |      result.::(i.dropRight(1) + " at partition "+index+".").iterator
         | }
    func: (index: Int, it: Iterator[Int])Iterator[String]
    
    
    
    scala> val rdd = sc.parallelize(1 to 10, 3)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))
    rdd1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at mapPartitionsWithIndex at <console>:28
    
    
    scala> rdd1.take(3)
    res2: Array[String] = Array(1,2,3 at partition 0. 4,5,6 at partition 1. 7,8,9,10 at partition 2.)

    sample(withReplacement, fraction, seed

    /**
    * Return a sampled subset of this RDD.
    *
    * @param withReplacement can elements be sampled multiple times (replaced when sampled out)
    * @param fraction expected size of the sample as a fraction of this RDD's size
    * without replacement: probability that each element is chosen; fraction must be [0, 1]
    * with replacement: expected number of times each element is chosen; fraction must be >= 0
    * @param seed seed for the random number generator
    */
    def sample(
    withReplacement: Boolean,
    fraction: Double,
    seed: Long = Utils.random.nextLong): RDD[T]

    sample(withReplacement, fraction, seed) Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed. 

    对原RDD进行采样,其中withReplacement表示是否有放回的抽样,fraction表示采样大小是原RDD的百分比,seed表示随机数生成器

    scala> val rdd = sc.parallelize(1 to 10, 3)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.sample(true,0.5,0)
    rdd1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[4] at sample at <console>:26
    
    scala> val rdd2 = rdd.sample(false,0.5,0)
    rdd2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[5] at sample at <console>:26
    
    scala> rdd1.collect
    res3: Array[Int] = Array(2)
    
    scala> rdd2.collect
    res4: Array[Int] = Array(1, 2, 4, 5, 6, 9)                                      
    
    
    scala> val rdd1 = rdd.sample(true,0.5,1)
    rdd1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[7] at sample at <console>:26
    
    scala> rdd1.collect
    res6: Array[Int] = Array(1, 3, 7, 7, 8, 8, 9, 10)

    union(otherDataset) 

    /**
    * Return the union of this RDD and another one. Any identical elements will appear multiple
    * times (use `.distinct()` to eliminate them).
    */
    def union(other: RDD[T]): RDD[T]

    union(otherDataset) Return a new dataset that contains the union of the elements in the source dataset and the argument. 

    将两个RDD合并成一个RDD,相同的元素可能出现多次,可以使用distinct去重。

    val rdd1 = sc.parallelize(1 to 5,2)
    val rdd2 = sc.parallelize(1 to 5,3)
    val rdd3 = sc.parallelize(2 to 8,3)
    val rdd = rdd1.union(rdd2).union(rdd3)
    rdd.collect
    rdd.distinct.collect
    scala> val rdd1 = sc.parallelize(1 to 5,2)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at <console>:24
    
    scala> val rdd2 = sc.parallelize(1 to 5,3)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:24
    
    scala> val rdd3 = sc.parallelize(2 to 8,3)
    rdd3: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:24
    
    
    scala> val rdd = rdd1.union(rdd2).union(rdd3)
    rdd: org.apache.spark.rdd.RDD[Int] = UnionRDD[12] at union at <console>:30
    
    scala> rdd.collect
    res7: Array[Int] = Array(1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 7, 8)     
    
    scala> rdd.distinct.collect
    res8: Array[Int] = Array(8, 1, 2, 3, 4, 5, 6, 7)   

    intersection(otherDataset

    /**
    * Return the intersection of this RDD and another one. The output will not contain any duplicate
    * elements, even if the input RDDs did.
    *
    * Note that this method performs a shuffle internally.
    */
    def intersection(other: RDD[T]): RDD[T]

    intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source dataset and the argument. 

    两个RDD共同的元素组合一个新的RDD

    val rdd1 = sc.parallelize(1 to 5,2)
    val rdd2 = sc.parallelize(4 to 8,3)
    val rdd = rdd1.intersection(rdd2)
    rdd.collect
    scala> val rdd1 = sc.parallelize(1 to 5,2)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[16] at parallelize at <console>:24
    
    scala> val rdd2 = sc.parallelize(4 to 8,3)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at parallelize at <console>:24
    
    scala> val rdd = rdd1.intersection(rdd2)
    rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[23] at intersection at <console>:28
    
    
    scala> rdd.collect
    res9: Array[Int] = Array(4, 5)

      scala> rdd.partitions.length
      res10: Int = 3

    /**
    * Return the intersection of this RDD and another one. The output will not contain any duplicate
    * elements, even if the input RDDs did. Performs a hash partition across the cluster
    *
    * Note that this method performs a shuffle internally.
    *
    * @param numPartitions How many partitions to use in the resulting RDD
    */
    def intersection(other: RDD[T], numPartitions: Int): RDD[T]

    def intersection(other: RDD[T]): RDD[T],numPartitions表示结果RDD的分区数量

    scala> val rdd = rdd1.intersection(rdd2,1)
    rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[41] at intersection at <console>:28
    
    scala> rdd.partitions.length
    res12: Int = 1

    /**
    * Return the intersection of this RDD and another one. The output will not contain any duplicate
    * elements, even if the input RDDs did.
    *
    * Note that this method performs a shuffle internally.
    *
    * @param partitioner Partitioner to use for the resulting RDD
    */
    def intersection(
    other: RDD[T],
    partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T]

    自定义分区

     自定义分区类必须继承Partitioner,方法numPartitions设置分区数量,getPartition获取分区索引。

    class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{
      override def numPartitions: Int = numParts
      override def getPartition(key: Any): Int = {
        key.toString.toInt%numPartitions
      }
    }
    val rdd1 = sc.parallelize(1 to 15,2)
    val rdd2 = sc.parallelize(5 to 25,2)
    val rdd = rdd1.intersection(rdd2,new MyPartitioner(5))
    rdd.collect
    rdd.partitions.length
    def func(index :Int, it : Iterator[Int]) = {
         var result = List[String]()
         var i = ""
         while(it.hasNext){
           i += it.next + ","
         }
         result.::(i.dropRight(1) + " at partition "+index+".").iterator
    }
    
    val rdd3 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))
    rdd3.collect
    scala> val rdd1 = sc.parallelize(1 to 15,2)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[54] at parallelize at <console>:27
    
    scala> val rdd2 = sc.parallelize(5 to 25,2)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[55] at parallelize at <console>:27
    
    scala> val rdd = rdd1.intersection(rdd2,newMyPartitioner(5))
    <console>:31: error: not found: value newMyPartitioner
           val rdd = rdd1.intersection(rdd2,newMyPartitioner(5))
                                            ^
    
    scala> val rdd = rdd1.intersection(rdd2,new MyPartitioner(5))
    rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[61] at intersection at <console>:32
    
    scala> rdd.collect
    res25: Array[Int] = Array(15, 10, 5, 11, 6, 7, 12, 13, 8, 14, 9)
    
    
    scala> rdd.partitions.length
    res26: Int = 5
    
    scala> def func(index :Int, it : Iterator[Int]) = {
         |     var result = List[String]()
         |      var i = ""
         |      while(it.hasNext){
         |        i += it.next + ","
         |      }
         |      result.::(i.dropRight(1) + " at partition "+index+".").iterator
         | }
    func: (index: Int, it: Iterator[Int])Iterator[String]
    
    scala> val rdd3 = rdd.mapPartitionsWithIndex((x,it) => func(x,it))
    rdd3: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[62] at mapPartitionsWithIndex at <console>:36
    
    scala> rdd3.collect
    res27: Array[String] = Array(15,10,5 at partition 0., 11,6 at partition 1., 7,12 at partition 2., 13,8 at partition 3., 14,9 at partition 4.)

    distinct([numTasks]) 

    distinct([numTasks]) Return a new dataset that contains the distinct elements of the source dataset.

    使用原RDD中的元素组成一个没有重复元素的RDD

    /**
    * Return a new RDD containing the distinct elements in this RDD.
    */
    def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

    numPartitions表示结果RDD的分区数量

    val a = Array(1,1,1,2,2,3,4,5)
    val rdd = sc.parallelize(a,2)
    rdd.collect
    val rdd1 = rdd.distinct(1)
    rdd1.collect
    rdd1.partitions.length
    scala> val a = Array(1,1,1,2,2,3,4,5)
    a: Array[Int] = Array(1, 1, 1, 2, 2, 3, 4, 5)
    
    scala> val rdd = sc.parallelize(a)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[42] at parallelize at <console>:26
    
    scala> val rdd = sc.parallelize(a,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[43] at parallelize at <console>:26
    
    scala> rdd.collect
    res13: Array[Int] = Array(1, 1, 1, 2, 2, 3, 4, 5)                               
    
    scala> val rdd1 = rdd.distinct(1)
    rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[46] at distinct at <console>:28
    
    scala> rdd1.collect
    res14: Array[Int] = Array(4, 1, 3, 5, 2)
    
    scala> rdd1.partitions.length
    res15: Int = 1

    /**
    * Return a new RDD containing the distinct elements in this RDD.
    */
    def distinct(): RDD[T]

    distinct(numPartitions: Int),不同的是结果RDD中partition数量依赖父RDD。

    scala> val rdd1 = rdd.distinct()
    rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[49] at distinct at <console>:28
    
    scala> rdd1.partitions.length
    res16: Int = 2
    
    scala> rdd1.collect
    res17: Array[Int] = Array(4, 2, 1, 3, 5)

    keyBy(func)

    /**
    * Creates tuples of the elements in this RDD by applying `f`.
    */
    def keyBy[K](f: T => K): RDD[(K, T)]

    使用func为RDD每一个元素创建一个key-value对元素

    val rdd = sc.parallelize(1 to 9 ,2)
    val rdd1 = rdd.keyBy(_%3)
    rdd1.collect
    scala> val rdd = sc.parallelize(1 to 9 ,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.keyBy(_%3)
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[1] at keyBy at <console>:26
    
    scala> rdd1.collect
    res0: Array[(Int, Int)] = Array((1,1), (2,2), (0,3), (1,4), (2,5), (0,6), (1,7), (2,8), (0,9))
    /**
    * Group the values for each key in the RDD into a single sequence. Hash-partitions the
    * resulting RDD with the existing partitioner/parallelism level. The ordering of elements
    * within each group is not guaranteed, and may even differ each time the resulting RDD is
    * evaluated.
    *
    * Note: This operation may be very expensive. If you are grouping in order to perform an
    * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
    * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
    */
    def groupByKey(): RDD[(K, Iterable[V])]
    val rdd = sc.parallelize(1 to 9 ,2)
    val rdd1 = rdd.keyBy(_%3)
    val rdd2 = rdd1.groupByKey()
    rdd2.collect
    scala> val rdd = sc.parallelize(1 to 9 ,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.keyBy(_%3)
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[3] at keyBy at <console>:26
    
    scala> val rdd2 = rdd1.groupByKey()
    rdd2: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[4] at groupByKey at <console>:28
    
    scala> rdd2.collect
    res1: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (2,CompactBuffer(2, 5, 8)), (1,CompactBuffer(1, 4, 7)))
    /**
    * Group the values for each key in the RDD into a single sequence. Hash-partitions the
    * resulting RDD with into `numPartitions` partitions. The ordering of elements within
    * each group is not guaranteed, and may even differ each time the resulting RDD is evaluated.
    *
    * Note: This operation may be very expensive. If you are grouping in order to perform an
    * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
    * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
    *
    * Note: As currently implemented, groupByKey must be able to hold all the key-value pairs for any
    * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]].
    */
    def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
    同groupByKey(),只是指定了分区数量。
    scala> val rdd = sc.parallelize(1 to 9 ,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[5] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.keyBy(_%3)
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[6] at keyBy at <console>:26
    
    scala> val rdd2 = rdd1.groupByKey(3)
    rdd2: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[7] at groupByKey at <console>:28
    
    scala> rdd2.partitions.length
    res2: Int = 3
    /**
    * Group the values for each key in the RDD into a single sequence. Allows controlling the
    * partitioning of the resulting key-value pair RDD by passing a Partitioner.
    * The ordering of elements within each group is not guaranteed, and may even differ
    * each time the resulting RDD is evaluated.
    *
    * Note: This operation may be very expensive. If you are grouping in order to perform an
    * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
    * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
    *
    * Note: As currently implemented, groupByKey must be able to hold all the key-value pairs for any
    * key in memory. If a key has too many values, it can result in an [[OutOfMemoryError]].
    */
    def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
    class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{
      override def numPartitions: Int = numParts
      override def getPartition(key: Any): Int = {
        key.toString.toInt%numPartitions
      }
    }
    
    val rdd = sc.parallelize(1 to 9 ,2)
    val rdd1 = rdd.keyBy(_%3)
    rdd1.collect
    val rdd2 = rdd1.groupByKey(new MyPartitioner(2))
    rdd2.collect
    
    
    scala> class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{
         |   override def numPartitions: Int = numParts
         |   override def getPartition(key: Any): Int = {
         |     key.toString.toInt%numPartitions
         |   }
         | }
    defined class MyPartitioner
    
    scala> val rdd = sc.parallelize(1 to 9 ,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.keyBy(_%3)
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[9] at keyBy at <console>:26
    
    scala> val rdd2 = rdd1.groupByKey(new MyPartitioner(2))
    rdd2: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[10] at groupByKey at <console>:29
    
    scala> rdd2.collect
    res3: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (2,CompactBuffer(2, 5, 8)), (1,CompactBuffer(1, 4, 7)))
    
    scala> rdd1.collect
    res4: Array[(Int, Int)] = Array((1,1), (2,2), (0,3), (1,4), (2,5), (0,6), (1,7), (2,8), (0,9))
    
    scala> rdd2.partitions.length
    res5: Int = 2
     

    groupBy(func)

    /**
    * Return an RDD of grouped items. Each group consists of a key and a sequence of elements
    * mapping to that key. The ordering of elements within each group is not guaranteed, and
    * may even differ each time the resulting RDD is evaluated.
    *
    * Note: This operation may be very expensive. If you are grouping in order to perform an
    * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
    * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
    */
    def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

    def func(x:Int) = {x%3}
    val rdd = sc.parallelize(1 to 10,2)
    val rdd1 = rdd.groupBy(func(_))
    rdd1.collect
    scala> def func(x:Int) = {x%3}
    func: (x: Int)Int
    
    scala> val rdd = sc.parallelize(1 to 10,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[64] at parallelize at <console>:27
    
    scala> val rdd1 = rdd.groupBy(func(_))
    rdd1: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[66] at groupBy at <console>:31
    
    scala> rdd1.collect
    res29: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (2,CompactBuffer(2, 5, 8)), (1,CompactBuffer(1, 4, 7, 10)))
    /**
    * Return an RDD of grouped elements. Each group consists of a key and a sequence of elements
    * mapping to that key. The ordering of elements within each group is not guaranteed, and
    * may even differ each time the resulting RDD is evaluated.
    *
    * Note: This operation may be very expensive. If you are grouping in order to perform an
    * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
    * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
    */
    def groupBy[K](
    f: T => K,
    numPartitions: Int)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

    同groupBy[K](f: T => K),只是指定了分区数量。

    def func(x:Int) = {x%3}
    val rdd = sc.parallelize(1 to 10,2)
    val rdd1 = rdd.groupBy(func(_),3)
    rdd1.collect
    scala> def func(x:Int) = {x%3}
    func: (x: Int)Int
    
    scala> val rdd = sc.parallelize(1 to 10,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.groupBy(func(_),3)
    rdd1: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[13] at groupBy at <console>:28
    
    scala> rdd1.partitions.length
    res6: Int = 3
    
    scala> rdd1.collect
    res7: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (1,CompactBuffer(1, 4, 7, 10)), (2,CompactBuffer(2, 5, 8)))
    /**
    * Return an RDD of grouped items. Each group consists of a key and a sequence of elements
    * mapping to that key. The ordering of elements within each group is not guaranteed, and
    * may even differ each time the resulting RDD is evaluated.
    *
    * Note: This operation may be very expensive. If you are grouping in order to perform an
    * aggregation (such as a sum or average) over each key, using [[PairRDDFunctions.aggregateByKey]]
    * or [[PairRDDFunctions.reduceByKey]] will provide much better performance.
    */
    def groupBy[K](f: T => K, p: Partitioner)(implicit kt: ClassTag[K], ord: Ordering[K] = null)
    : RDD[(K, Iterable[T])]

    class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{
      override def numPartitions: Int = numParts
      override def getPartition(key: Any): Int = {
        key.toString.toInt%numPartitions
      }
    }
    def func(x:Int) = {x%3}
    val rdd = sc.parallelize(1 to 10,2)
    val rdd1 = rdd.groupBy(func(_),new MyPartitioner(3))
    rdd1.collect
    rdd1.partitions.length
    scala> class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{
         |   override def numPartitions: Int = numParts
         |   override def getPartition(key: Any): Int = {
         |     key.toString.toInt%numPartitions
         |   }
         | }
    defined class MyPartitioner
    
    scala> def func(x:Int) = {x%3}
    func: (x: Int)Int
    
    scala> val rdd = sc.parallelize(1 to 10,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[14] at parallelize at <console>:24
    
    scala> val rdd1 = rdd.groupBy(func(_),new MyPartitioner(3))
    rdd1: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[16] at groupBy at <console>:29
    
    scala> rdd1.collect
    res8: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(3, 6, 9)), (1,CompactBuffer(1, 4, 7, 10)), (2,CompactBuffer(2, 5, 8)))
    
    scala> rdd1.partitions.length
    res9: Int = 3

    reduceByKey(func, [numTasks])

    reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function func, which must be of type (V,V) => V. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument. 
    对每一个key的所有value使用func函数进行聚合

    /**

    * Merge the values for each key using an associative and commutative reduce function. This will
    * also perform the merging locally on each mapper before sending results to a reducer, similarly
    * to a "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/
    * parallelism level.
    */
    def reduceByKey(func: (V, V) => V): RDD[(K, V)]
    val words = Array("one", "two", "two", "three", "three", "three")
    val rdd = sc.parallelize(words).map(word => (word, 1))
    val rdd1 = rdd.reduceByKey(_ + _)
    rdd1.collect
    scala> val words = Array("one", "two", "two", "three", "three", "three")  
    words: Array[String] = Array(one, two, two, three, three, three)
    
    scala> val rdd = sc.parallelize(words).map(word => (word, 1))  
    rdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[18] at map at <console>:26
    
    scala> val rdd1 = rdd.reduceByKey(_ + _) 
    rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[19] at reduceByKey at <console>:28
    
    scala> rdd1.collect
    res10: Array[(String, Int)] = Array((two,2), (one,1), (three,3))
    /**
    * Merge the values for each key using an associative and commutative reduce function. This will
    * also perform the merging locally on each mapper before sending results to a reducer, similarly
    * to a "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions.
    */
    def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
    同上,只是指定了分区数量
    scala> val rdd2 = rdd.reduceByKey(_ + _,3) 
    rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[20] at reduceByKey at <console>:28
    
    scala> rdd2.collect
    res11: Array[(String, Int)] = Array((two,2), (one,1), (three,3))                
    
    scala> rdd2.partitions.length
    res12: Int = 3
    
    
    /**
    * Merge the values for each key using an associative and commutative reduce function. This will
    * also perform the merging locally on each mapper before sending results to a reducer, similarly
    * to a "combiner" in MapReduce.
    */
    def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)]
    同上,使用partitioner自定义分区


  • 相关阅读:
    查询oracle数据库里面所有的表名
    mysql 触发器 trigger用法 four
    mysql 触发器 trigger用法 three (稍微复杂的)
    mysql 触发器 trigger用法 two (稍微复杂的)
    腾讯云SSL证书+阿里云负载均衡实现https转https
    关于redis  WARNING overcommit_memory is set to 0 的问题解决
    腾讯云申请免费ssl证书(1年有效期)
    阿里云创建负载均衡
    Go语言循环语句
    Go语言条件语句
  • 原文地址:https://www.cnblogs.com/alianbog/p/5828935.html
Copyright © 2011-2022 走看看