zoukankan      html  css  js  c++  java
  • Anaconda+Tensorflow环境安装与配置

    Anaconda安装

    清华大学 TUNA 镜像源选择对应的操作系统与所需的Python版本下载Anaconda安装包。Windows环境下的安装包直接执行.exe文件进行安装即可,Ubuntu环境下在终端执行

    $ bash Anaconda2-4.3.1-Linux-x86_64.sh   #Python 2.7版本

    或者

    $ bash Anaconda3-4.3.1-Linux-x86_64.sh  #Python 3.5 版本

    在安装的过程中,会询问安装路径,按回车即可。之后会询问是否将Anaconda安装路径加入到环境变量(.bashrc)中,输入yes,这样以后在终端中输入python即可直接进入Anaconda的Python版本(如果你的系统中之前安装过Python,自行选择yes or no)。安装成功后,会有当前用户根目录下生成一个anaconda2的文件夹,里面就是安装好的内容

    查询安装信息

    $ conda info

    查询当前已经安装的库

    $ conda list

    安装库(***代表库名称)

    $ conda install ***  

    更新库

     $ conda update *** 

    Anaconda仓库镜像

    官方下载更新工具包的速度很慢,所以继续添加清华大学 TUNA提供的Anaconda仓库镜像,在终端或cmd中输入如下命令进行添加

    $ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    $ conda config --set show_channel_urls yes
    
    $ conda install numpy   #测试是否添加成功

    之后会自动在用户根目录生成“.condarc”文件,Ubuntu环境下路径为~/.condarc,Windows环境下路径为C:用户your_user_name.condarc

    channels:
     - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
     - defaults
    show_channel_urls: yes

    如果要删除镜像,直接删除“.condarc”文件即可

    Tensorflow安装

    在终端或cmd中输入以下命令搜索当前可用的tensorflow版本

    $ anaconda search -t conda tensorflow
    
    Using Anaconda API: https://api.anaconda.org
    Run 'anaconda show <USER/PACKAGE>' to get more details:
    Packages:
         Name                      |  Version | Package Types   | Platforms      
         ------------------------- |   ------ | --------------- | ---------------
         HCC/tensorflow            |    1.0.0 | conda           | linux-64       
         HCC/tensorflow-cpucompat  |    1.0.0 | conda           | linux-64       
         HCC/tensorflow-fma        |    1.0.0 | conda           | linux-64       
         SentientPrime/tensorflow  |    0.6.0 | conda           | osx-64         
                                              : TensorFlow helps the tensors flow
         acellera/tensorflow-cuda  |   0.12.1 | conda           | linux-64       
         anaconda/tensorflow       |    1.0.1 | conda           | linux-64       
         anaconda/tensorflow-gpu   |    1.0.1 | conda           | linux-64       
         conda-forge/tensorflow    |    1.0.0 | conda           | linux-64, win-64, osx-64
                                              : TensorFlow helps the tensors flow
         creditx/tensorflow        |    0.9.0 | conda           | linux-64       
                                              : TensorFlow helps the tensors flow
         derickl/tensorflow        |   0.12.1 | conda           | osx-64         
         dhirschfeld/tensorflow    | 0.12.0rc0 | conda           | win-64         
         dseuss/tensorflow         |          | conda           | osx-64         
         guyanhua/tensorflow       |    1.0.0 | conda           | linux-64       
         ijstokes/tensorflow       | 2017.03.03.1349 | conda, ipynb    | linux-64       
         jjh_cio_testing/tensorflow |    1.0.1 | conda           | linux-64       
         jjh_cio_testing/tensorflow-gpu |    1.0.1 | conda           | linux-64       
         jjh_ppc64le/tensorflow    |    1.0.1 | conda           | linux-ppc64le  
         jjh_ppc64le/tensorflow-gpu |    1.0.1 | conda           | linux-ppc64le  
         jjhelmus/tensorflow       | 0.12.0rc0 | conda, pypi     | linux-64, osx-64
                                              : TensorFlow helps the tensors flow
         jjhelmus/tensorflow-gpu   |    1.0.1 | conda           | linux-64       
         kevin-keraudren/tensorflow |    0.9.0 | conda           | linux-64       
         lcls-rhel7/tensorflow     |   0.12.1 | conda           | linux-64       
         marta-sd/tensorflow       |    1.0.1 | conda           | linux-64       
                                              : TensorFlow helps the tensors flow
         memex/tensorflow          |    0.5.0 | conda           | linux-64, osx-64
                                              : TensorFlow helps the tensors flow
         mhworth/tensorflow        |    0.7.1 | conda           | osx-64         
                                              : TensorFlow helps the tensors flow
         miovision/tensorflow      | 0.10.0.gpu | conda           | linux-64, osx-64
         msarahan/tensorflow       | 1.0.0rc2 | conda           | linux-64       
         mutirri/tensorflow        | 0.10.0rc0 | conda           | linux-64       
         mwojcikowski/tensorflow   |    1.0.1 | conda           | linux-64       
         rdonnelly/tensorflow      |    0.9.0 | conda           | linux-64       
         rdonnellyr/r-tensorflow   |    0.4.0 | conda           | osx-64         
         test_org_002/tensorflow   | 0.10.0rc0 | conda           |                
    Found 32 packages

    选择一个较新的CPU或GPU版本,如jjh_cio_testing/tensorflow-gpu的1.0.1版本,输入如下命令查询安装命令

    $ anaconda show jjh_cio_testing/tensorflow-gpu
    
    Using Anaconda API: https://api.anaconda.org
    Name:    tensorflow-gpu
    Summary: 
    Access:  public
    Package Types:  conda
    Versions:
       + 1.0.1
    
    To install this package with conda run:
         conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu

    使用最后一行的提示命令进行安装

    $ conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu
    
    Fetching package metadata .............
    Solving package specifications: .
    
    Package plan for installation in environment /home/will/anaconda2:
    
    The following packages will be SUPERSEDED by a higher-priority channel:
    
        tensorflow-gpu: 1.0.1-py27_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free --> 1.0.1-py27_4 jjh_cio_testing
    
    Proceed ([y]/n)? 

    conda会自动检测安装此版本的Tensorflow所依赖的库,如果你的Anaconda缺少这些依赖库,会提示你安装。因为我之前已经安装过了,所以这里只提示我安装Tensorflow。输入y并回车之后等待安装结束即可

    • 可以选择次高版本的Tensorflow安装,因为最新版本可能清华 TUNA的仓库镜像库没有及时更新,而官方更新连接总是失败,我最开始选择了jjhelmus/tensorflow-gpu的1.0.1版本,其他依赖库清华 TUNA的仓库镜像有资源,而到最后jjhelmus/tensorflow-gpu版本的Tensorflow安装包总是下载不下来,尝试20多次之后换了一个1.0.0的版本,终于顺利安装成功

    进入python,输入

    import tensorflow as tf

    如果没有报错说明安装成功。

    参考

    1. Anaconda 镜像使用帮助
    2. tensorflow学习笔记一:安装调试
     
     转载请注明出处:http://www.cnblogs.com/willnote/p/6746499.html
  • 相关阅读:
    Leetcode 1489找到最小生成树李关键边和伪关键边
    Leetcode 113 路径总和 II
    hdu 1223 还是畅通工程
    hdu 1087 Super Jumping! Jumping! Jumping!
    hdu 1008 Elevator
    hdu 1037 Keep on Truckin'
    湖工oj 1241 畅通工程
    湖工oj 1162 大武汉局域网
    hdu 2057 A + B Again
    poj 2236 Wireless Network
  • 原文地址:https://www.cnblogs.com/retrieval/p/7639591.html
Copyright © 2011-2022 走看看