zoukankan      html  css  js  c++  java
  • LRU Cache

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

    get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
    set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

     1 public class LRUCache {
     2     private HashMap<Integer,Element> map;
     3     private int capacity;
     4     private int used;
     5     public class Element{
     6         int value, key;
     7         Element next, pre;
     8         public Element(int key, int value){
     9             this.value = value;
    10             this.key = key;
    11             next = null;
    12             pre = null;
    13         }
    14     }
    15     private Element header;
    16     public LRUCache(int capacity) {
    17         map = new HashMap<Integer,Element>();
    18         this.capacity = capacity;
    19         used = 0;
    20         header = new Element(-1,-1);
    21         header.pre = header;
    22         header.next = header;
    23     }
    24     private Element add(Element n){
    25     //add to the tail of doublelinkedlist, header is both the header and tail of list
    26         header.pre.next = n;
    27         n.next = header;
    28         n.pre = header.pre;
    29         header.pre = n;
    30         used ++;
    31         return n;
    32     }
    33     private Element remove(Element n){
    34     //remove certain element
    35         n.pre.next = n.next;
    36         n.next.pre = n.pre;
    37         n.pre = null;
    38         n.next = null;
    39         used --;
    40         return n;
    41     }
    42     public int get(int key) {
    43         if(map.containsKey(key)){
    44             Element tmp = map.get(key);
    45             tmp.pre.next = tmp.next;
    46             tmp.next.pre = tmp.pre;
    47             remove(tmp);//这个要先remove 才能保证used的值是正确的。
    48             Element add = add(tmp);
    49             map.put(key, add);
    50             return map.get(key).value;  
    51         } 
    52         return -1;
    53     }
    54     public void set(int key, int value) {
    55         if(key < 1) return;
    56         if(map.containsKey(key)){
    57             Element tmp = map.get(key);
    58             tmp = remove(tmp);
    59         }else if(used == capacity){
    60             Element lruKey = remove(header.next);
    61             map.remove(lruKey.key);
    62         }
    63         Element add = add(new Element(key, value));
    64         map.put(key, add);
    65     }
    66 }

     第二遍:

     1 public class LRUCache {
     2     public class Element{
     3         int key;
     4         int value;
     5         Element prev, next;
     6         public Element(int key, int value){
     7             this.key = key;
     8             this.value = value;
     9             this.prev = null;
    10             this.next = null;
    11         }
    12     }
    13     private int capacity;
    14     private int used;
    15     private Element header;
    16     private HashMap<Integer, Element> map;
    17     
    18     public LRUCache(int capacity) {
    19         this.capacity = capacity;
    20         this.used = 0;
    21         this.map = new HashMap<Integer, Element>();
    22         this.header = new Element(-1, -1);//header for double linked list
    23         header.prev = header;
    24         header.next = header;
    25     }
    26     
    27     private Element add(Element node){//add to the tail
    28         used ++;
    29         node.next = header;
    30         node.prev = header.prev;
    31         header.prev.next = node;
    32         header.prev = node;
    33         return node;
    34     }
    35     
    36     private Element remove(Element node){//remove node in any position
    37         used --;
    38         node.prev.next = node.next;
    39         node.next.prev = node.prev;
    40         node.next = null;
    41         node.prev = null;
    42         return node;
    43     }
    44     
    45     public int get(int key) {
    46         if(map.containsKey(key)){
    47             Element tmp = add(remove(map.get(key)));
    48             map.put(key, tmp);
    49             return tmp.value;
    50         }
    51         return -1;
    52     }
    53     
    54     public void set(int key, int value) {
    55         if(used == capacity || map.containsKey(key)){
    56             Element tmp = (map.containsKey(key) ? map.get(key) : header.next);// 这里只能是判断map.containsKey,因为可能出现 map.containsKey 和 used == capaity 同时满足的情况!
    57             map.remove(tmp.key);
    58             remove(tmp);
    59         }
    60         Element tmp = add(new Element(key, value));
    61         map.put(key, tmp);
    62     }
    63 }
  • 相关阅读:
    Python round() 函数
    Python pow() 函数
    图像角点检测
    计算机视觉解析力
    空间点像素索引(三)
    空间点像素索引(二)
    空间点像素索引(一)
    相机标定实用方案
    摄像头的主要参数
    多篇开源CVPR 2020 语义分割论文
  • 原文地址:https://www.cnblogs.com/reynold-lei/p/3422555.html
Copyright © 2011-2022 走看看