zoukankan      html  css  js  c++  java
  • Linear Regression and Gradient Descent (English version)

    1.Problem and Loss Function
     
    Linear Regression is a Supervised Learning Algorithm with input matrix X and output label Y. We train a system to make hypothesis, which we hope to be as close to Y as possible. The system we build for Linear Regression is :
     
    hθ(X)=θTX

    From the initial state, we probably have a really poor system (may be only output zero). By using X and Y to train, we try to derive a better parameter θ. The training process (learning process) may be time-consuming, because the algorithm updates parameters only a little on every training step.

    2. Cost Function?

    Suppose driving from somewhere to Toronto: it is easy to know the coordinates of Toronto, but it is more important to know where we are now! Cost function is the tool giving us how different between  Hypothesis and label Y, so that we can drive to the target. For regression problem, we use MSE as the cost function.

     
    This can be understood from another perspective. Suppose the difference between Y and H is ε, and ε~N(0,σ2). So, y~N(θTX,σ2). Then we do Maximum Likelihood Estimate, we can also get the same cost function. (https://stats.stackexchange.com/questions/253345/relationship-between-mle-and-least-squares-in-case-of-linear-regression)
     
     
    3.Gradient Descent
     
    The process of GD is quite like go downhill along the steepest direction on every dimension.
     
     
    We take derivatives along every dimension
    Then update all θ by a small learning rate alpha simultaneously
     
    4. Batch Learning, Stochastic and Mini Batch
     
    In above, we use all the training examples together to calculate cost function and gradient. This method is called 'Batch Gradient Descent'. The issue here is: what if there is a exetremely large data set? The training process can be quitely long. A variant is called Stochastic Gradient Descent, also 'Online Learning'. Every time when it trains, the algorithm only uses a single training example, which may result in very zigzagged learning curve. Finally, the most popurlar version:' Mini-Batch Gradient Descent'. It chooses a small group of training example to learn, so the speed is OK, and the learning curve is more smooth.
  • 相关阅读:
    Windows内存布局 / MmPfnDataBase页帧数据库
    保护模式中的PDE与PTE
    保护模式101012分页机制
    Windows系统调用中的系统服务表描述符(SSDT)
    Windows系统调用中的系统服务表
    三环进入零环的细节(KiFastCallEntry函数分析)
    Windows系统调用中API从3环到0环(下)
    SQL反模式学习笔记5 外键约束【不用钥匙的入口】
    SQL反模式学习笔记3 单纯的树
    SQL反模式学习笔记2 乱穿马路
  • 原文地址:https://www.cnblogs.com/rhyswang/p/10057434.html
Copyright © 2011-2022 走看看