zoukankan      html  css  js  c++  java
  • OpenCV两种畸变校正模型源代码分析以及CUDA实现

    图像算法中会经常用到摄像机的畸变校正,有必要总结分析OpenCV中畸变校正方法,其中包括普通针孔相机模型和鱼眼相机模型fisheye两种畸变校正方法。

    普通相机模型畸变校正函数针对OpenCV中的cv::initUndistortRectifyMap(),鱼眼相机模型畸变校正函数对应OpenCV中的cv::fisheye::initUndistortRectifyMap()。两种方法算出映射Mapx和Mapy后,统一用cv::Remap()函数进行插值得到校正后的图像。

    1. FishEye模型的畸变校正。

    方便起见,直接贴出OpenCV源码,我在里面加了注释说明。建议参考OpenCV官方文档看畸变模型原理会更清楚:https://docs.opencv.org/3.0-beta/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#fisheye-initundistortrectifymap

    简要流程就是:

    1. 求内参矩阵的逆,由于摄像机坐标系的三维点到二维图像平面,需要乘以旋转矩阵R和内参矩阵K。那么反向投影回去则是二维图像坐标乘以  K*R的逆矩阵。

    2. 将目标图像中的每一个像素点坐标(j,i),乘以1中求出的逆矩阵iR,转换到摄像机坐标系(_x,_y,_w),并归一化得到z=1平面下的三维坐标(x,y,1);

    3.求出平面模型下像素点对应鱼眼半球模型下的极坐标(r, theta)。

    4.利用鱼眼畸变模型求出拥有畸变时像素点对应的theta_d。

    5.利用求出的theta_d值将三维坐标点重投影到二维图像平面得到(u,v),(u,v)即为目标图像对应的畸变图像中像素点坐标

    6.使用cv::Remap()函数,根据mapx,mapy取出对应坐标位置的像素值赋值给目标图像,一般采用双线性插值法,得到畸变校正后的目标图像。

    #include <opencv2opencv.hpp>
    
    void cv::fisheye::initUndistortRectifyMap( InputArray K, InputArray D, InputArray R, InputArray P,
        const cv::Size& size, int m1type, OutputArray map1, OutputArray map2 )
    {
        CV_Assert( m1type == CV_16SC2 || m1type == CV_32F || m1type <=0 );
        map1.create( size, m1type <= 0 ? CV_16SC2 : m1type );
        map2.create( size, map1.type() == CV_16SC2 ? CV_16UC1 : CV_32F );
    
        CV_Assert((K.depth() == CV_32F || K.depth() == CV_64F) && (D.depth() == CV_32F || D.depth() == CV_64F));
        CV_Assert((P.empty() || P.depth() == CV_32F || P.depth() == CV_64F) && (R.empty() || R.depth() == CV_32F || R.depth() == CV_64F));
        CV_Assert(K.size() == Size(3, 3) && (D.empty() || D.total() == 4));
        CV_Assert(R.empty() || R.size() == Size(3, 3) || R.total() * R.channels() == 3);
        CV_Assert(P.empty() || P.size() == Size(3, 3) || P.size() == Size(4, 3));
    
        //从内参矩阵K中取出归一化焦距fx,fy; cx,cy
        cv::Vec2d f, c;
        if (K.depth() == CV_32F)
        {
            Matx33f camMat = K.getMat();
            f = Vec2f(camMat(0, 0), camMat(1, 1));
            c = Vec2f(camMat(0, 2), camMat(1, 2));
        }
        else
        {
            Matx33d camMat = K.getMat();
            f = Vec2d(camMat(0, 0), camMat(1, 1));
            c = Vec2d(camMat(0, 2), camMat(1, 2));
        }
        //从畸变系数矩阵D中取出畸变系数k1,k2,k3,k4
        Vec4d k = Vec4d::all(0);
        if (!D.empty())
            k = D.depth() == CV_32F ? (Vec4d)*D.getMat().ptr<Vec4f>(): *D.getMat().ptr<Vec4d>();
    
        //旋转矩阵RR转换数据类型为CV_64F,如果不需要旋转,则RR为单位阵
        cv::Matx33d RR  = cv::Matx33d::eye();
        if (!R.empty() && R.total() * R.channels() == 3)
        {
            cv::Vec3d rvec;
            R.getMat().convertTo(rvec, CV_64F);
            RR = Affine3d(rvec).rotation();
        }
        else if (!R.empty() && R.size() == Size(3, 3))
            R.getMat().convertTo(RR, CV_64F);
        
        //新的内参矩阵PP转换数据类型为CV_64F
        cv::Matx33d PP = cv::Matx33d::eye();
        if (!P.empty())
            P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
    
        //关键一步:新的内参矩阵*旋转矩阵,然后利用SVD分解求出逆矩阵iR,后面用到
        cv::Matx33d iR = (PP * RR).inv(cv::DECOMP_SVD);
    
        //反向映射,遍历目标图像所有像素位置,找到畸变图像中对应位置坐标(u,v),并分别保存坐标(u,v)到mapx和mapy中
        for( int i = 0; i < size.height; ++i)
        {
            float* m1f = map1.getMat().ptr<float>(i);
            float* m2f = map2.getMat().ptr<float>(i);
            short*  m1 = (short*)m1f;
            ushort* m2 = (ushort*)m2f;
    
            //二维图像平面坐标系->摄像机坐标系
            double _x = i*iR(0, 1) + iR(0, 2),
                   _y = i*iR(1, 1) + iR(1, 2),
                   _w = i*iR(2, 1) + iR(2, 2);
    
            for( int j = 0; j < size.width; ++j)
            {
                //归一化摄像机坐标系,相当于假定在Z=1平面上
                double x = _x/_w, y = _y/_w;
    
                //求鱼眼半球体截面半径r
                double r = sqrt(x*x + y*y);
                //求鱼眼半球面上一点与光心的连线和光轴的夹角Theta
                double theta = atan(r);
                //畸变模型求出theta_d,相当于有畸变的角度值
                double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta4*theta4;
                double theta_d = theta * (1 + k[0]*theta2 + k[1]*theta4 + k[2]*theta6 + k[3]*theta8);
                //利用有畸变的Theta值,将摄像机坐标系下的归一化三维坐标,重投影到二维图像平面,得到(j,i)对应畸变图像中的(u,v)
                double scale = (r == 0) ? 1.0 : theta_d / r;
                double u = f[0]*x*scale + c[0];
                double v = f[1]*y*scale + c[1];
    
                //保存(u,v)坐标到mapx,mapy
                if( m1type == CV_16SC2 )
                {
                    int iu = cv::saturate_cast<int>(u*cv::INTER_TAB_SIZE);
                    int iv = cv::saturate_cast<int>(v*cv::INTER_TAB_SIZE);
                    m1[j*2+0] = (short)(iu >> cv::INTER_BITS);
                    m1[j*2+1] = (short)(iv >> cv::INTER_BITS);
                    m2[j] = (ushort)((iv & (cv::INTER_TAB_SIZE-1))*cv::INTER_TAB_SIZE + (iu & (cv::INTER_TAB_SIZE-1)));
                }
                else if( m1type == CV_32FC1 )
                {
                    m1f[j] = (float)u;
                    m2f[j] = (float)v;
                }
    
                //这三条语句是上面 ”//二维图像平面坐标系->摄像机坐标系“的一部分,是矩阵iR的第一列,这样写能够简化计算
                _x += iR(0, 0);
                _y += iR(1, 0);
                _w += iR(2, 0);
            }
        }
    }

    2.普通相机模型的畸变校正

     同样建议参考OpenCV官方文档阅读代码 https://docs.opencv.org/3.0-beta/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html# 

    主要流程和上面Fisheye模型差不多,只有第4部分的畸变模型不一样,普通相机的畸变模型如下:

     

     同样把源代码贴上,并加上注解:

    #include <opencv2opencv.hpp>
    
    void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,
                                  InputArray _matR, InputArray _newCameraMatrix,
                                  Size size, int m1type, OutputArray _map1, OutputArray _map2 )
    {
        Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
        Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
    
        if( m1type <= 0 )
            m1type = CV_16SC2;
        CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
        _map1.create( size, m1type );
        Mat map1 = _map1.getMat(), map2;
        if( m1type != CV_32FC2 )
        {
            _map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
            map2 = _map2.getMat();
        }
        else
            _map2.release();
    
        Mat_<double> R = Mat_<double>::eye(3, 3);
        Mat_<double> A = Mat_<double>(cameraMatrix), Ar;
    
        if( !newCameraMatrix.empty() )
            Ar = Mat_<double>(newCameraMatrix);
        else
            Ar = getDefaultNewCameraMatrix( A, size, true );
    
        if( !matR.empty() )
            R = Mat_<double>(matR);
    
        if( !distCoeffs.empty() )
            distCoeffs = Mat_<double>(distCoeffs);
        else
        {
            distCoeffs.create(14, 1, CV_64F);
            distCoeffs = 0.;
        }
    
        CV_Assert( A.size() == Size(3,3) && A.size() == R.size() );
        CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
    
        //LU分解求新的内参矩阵Ar与旋转矩阵R乘积的逆矩阵iR
        Mat_<double> iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU);
        const double* ir = &iR(0,0);
    
        //从旧的内参矩阵中取出光心位置u0,v0,和归一化焦距fx,fy
        double u0 = A(0, 2),  v0 = A(1, 2);
        double fx = A(0, 0),  fy = A(1, 1);
    
        //尼玛14个畸变系数,不过大多用到的只有(k1,k2,p1,p2),最多加一个k3,用不到的置为0
        CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
                   distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
                   distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) ||
                   distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1) ||
                   distCoeffs.size() == Size(1, 14) || distCoeffs.size() == Size(14, 1));
    
        if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )
            distCoeffs = distCoeffs.t();
    
        const double* const distPtr = distCoeffs.ptr<double>();
        double k1 = distPtr[0];
        double k2 = distPtr[1];
        double p1 = distPtr[2];
        double p2 = distPtr[3];
        double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? distPtr[4] : 0.;
        double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[5] : 0.;
        double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[6] : 0.;
        double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[7] : 0.;
        double s1 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[8] : 0.;
        double s2 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[9] : 0.;
        double s3 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[10] : 0.;
        double s4 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[11] : 0.;
        double tauX = distCoeffs.cols + distCoeffs.rows - 1 >= 14 ? distPtr[12] : 0.;
        double tauY = distCoeffs.cols + distCoeffs.rows - 1 >= 14 ? distPtr[13] : 0.;
    
        //tauX,tauY这个是什么梯形畸变,用不到的话matTilt为单位阵
        // Matrix for trapezoidal distortion of tilted image sensor
        cv::Matx33d matTilt = cv::Matx33d::eye();
        cv::detail::computeTiltProjectionMatrix(tauX, tauY, &matTilt);
    
        for( int i = 0; i < size.height; i++ )
        {
            float* m1f = map1.ptr<float>(i);
            float* m2f = map2.empty() ? 0 : map2.ptr<float>(i);
            short* m1 = (short*)m1f;
            ushort* m2 = (ushort*)m2f;
    
            //利用逆矩阵iR将二维图像坐标(j,i)转换到摄像机坐标系(_x,_y,_w)
            double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8];
    
            for( int j = 0; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] )
            {
                //摄像机坐标系归一化,令Z=1平面
                double w = 1./_w, x = _x*w, y = _y*w;
                 //这一部分请看OpenCV官方文档,畸变模型部分
                double x2 = x*x, y2 = y*y;
                double r2 = x2 + y2, _2xy = 2*x*y;
                double kr = (1 + ((k3*r2 + k2)*r2 + k1)*r2)/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
                double xd = (x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+s2*r2*r2);
                double yd = (y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+s4*r2*r2);
               //根据求取的xd,yd将三维坐标重投影到二维畸变图像坐标(u,v)
                cv::Vec3d vecTilt = matTilt*cv::Vec3d(xd, yd, 1);
                double invProj = vecTilt(2) ? 1./vecTilt(2) : 1;
                double u = fx*invProj*vecTilt(0) + u0;
                double v = fy*invProj*vecTilt(1) + v0;
                //保存u,v的值到Mapx,Mapy中
                if( m1type == CV_16SC2 )
                {
                    int iu = saturate_cast<int>(u*INTER_TAB_SIZE);
                    int iv = saturate_cast<int>(v*INTER_TAB_SIZE);
                    m1[j*2] = (short)(iu >> INTER_BITS);
                    m1[j*2+1] = (short)(iv >> INTER_BITS);
                    m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1)));
                }
                else if( m1type == CV_32FC1 )
                {
                    m1f[j] = (float)u;
                    m2f[j] = (float)v;
                }
                else
                {
                    m1f[j*2] = (float)u;
                    m1f[j*2+1] = (float)v;
                }
            }
        }
    }

     如有错误,望不吝赐教!

    另附上CUDA实现两种畸变校正方法的代码,放在我的码云上:https://gitee.com/rxdj/camera-calibration.git。见cudaUndistort中的两个.cu文件

  • 相关阅读:
    asp.net 生成静态页
    修改数据库字段以及字段类型
    int ,int?,int??
    ASP.NET JS常用方法类
    遍历repeater中的控件的几种方式
    .net获取ip地址
    asp.net中DataList和Repeater的使用
    Web.config中注册用户控件和自定义控件
    dos 必知八项命令
    ASP.NET配置文件Web.config
  • 原文地址:https://www.cnblogs.com/riddick/p/7811877.html
Copyright © 2011-2022 走看看