zoukankan      html  css  js  c++  java
  • POJ3186:Treats for the Cows(区间DP)

    Description

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

    The treats are interesting for many reasons:
    • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
    • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
    • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
    • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
    Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

    The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    Output

    Line 1: The maximum revenue FJ can achieve by selling the treats

    Sample Input

    5
    1
    3
    1
    5
    2

    Sample Output

    43

    Hint

    Explanation of the sample:

    Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

    FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43
     
    题意:给出的一系列的数字,可以看成一个双向队列,每次只能从队首或者队尾出队,第n个出队就拿这个数乘以n,最后将和加起来,求最大和
    思路:由里向外逆推区间
     
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    
    int a[2005],dp[2005][2005];
    
    int main()
    {
        int n,i,j,k,l,ans;
        while(~scanf("%d",&n))
        {
            for(i = 1; i<=n; i++)
                scanf("%d",&a[i]);
            memset(dp,0,sizeof(dp));
            for(i = 1; i<=n; i++)
                dp[i][i] = a[i]*n;//将对角线初始化
            for(l = 1; l<n; l++)
            {
                for(i = 1; i+l<=n; i++)
                {
                    j = i+l;
                    dp[i][j] = max(dp[i+1][j]+(n-l)*a[i],dp[i][j-1]+(n-l)*a[j]);//这里是从最后出队的开始往前推,之前的初始化也是为了这里,因为只有最后出队的,i+1才会等于j。
                }
            }
            printf("%d
    ",dp[1][n]);
        }
    
        return 0;
    }
    

  • 相关阅读:
    ZYB建围墙
    换根DP
    原码,反码,补码的计算
    字符串游戏-博弈论-trie
    【十连赛day8】神炎皇
    生成序列
    【USACO 2006 February Silver】产奶安排Stall Reservations-贪心
    tar 压缩解压命令
    java 注解
    回溯算法解决全排列问题
  • 原文地址:https://www.cnblogs.com/riskyer/p/3235275.html
Copyright © 2011-2022 走看看