zoukankan      html  css  js  c++  java
  • hdu2817之整数快速幂

    A sequence of numbers

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2033    Accepted Submission(s): 627

    Problem Description
    Xinlv wrote some sequences on the paper a long time ago, they might be arithmetic or geometric sequences. The numbers are not very clear now, and only the first three numbers of each sequence are recognizable. Xinlv wants to know some numbers in these sequences, and he needs your help.
     
    Input
    The first line contains an integer N, indicting that there are N sequences. Each of the following N lines contain four integers. The first three indicating the first three numbers of the sequence, and the last one is K, indicating that we want to know the K-th numbers of the sequence.

    You can assume 0 < K <= 10^9, and the other three numbers are in the range [0, 2^63). All the numbers of the sequences are integers. And the sequences are non-decreasing.
     
    Output
    Output one line for each test case, that is, the K-th number module (%) 200907.
     
    Sample Input
    2 1 2 3 5 1 2 4 5
     
    Sample Output
    5 16
     

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<map>
    #include<iomanip>
    #define INF 99999999
    using namespace std;
    
    const int MAX=10;
    const int mod=200907;
    
    __int64 pow(__int64 a,__int64 k){
    	__int64 sum=1;
    	while(k){
    		if(k&1)sum=(sum*a)%mod;
    		a=(a*a)%mod;
    		k>>=1;
    	}
    	return sum;
    }
    
    int main(){
    	__int64 n,a,b,c,k;
    	cin>>n;
    	while(n--){
    		cin>>a>>b>>c>>k;
    		if(b-a+b == c)printf("%I64d
    ",((k-1)%mod*((b-a)%mod)+a%mod)%mod);
    		else{
    			__int64 q=b/a;
    			printf("%I64d
    ",(pow(q,k-1)*(a%mod))%mod);
    		}
    	}
    	return 0;
    } 
  • 相关阅读:
    Windows 7安装 OneDrive
    MySQL8.0降级为MySQL5.7
    Windows和Linux下安装Rsync
    Jenkins持续集成工具安装
    Pure-Ftpd安装配置
    redis安装配置
    Tcp粘包处理
    .Net Core Socket 压力测试
    使用RpcLite构建SOA/Web服务(Full .Net Framework)
    使用RpcLite构建SOA/Web服务
  • 原文地址:https://www.cnblogs.com/riskyer/p/3239153.html
Copyright © 2011-2022 走看看