zoukankan      html  css  js  c++  java
  • Strict Weak Ordering

    Description

    A Strict Weak Ordering is a Binary Predicate that compares two objects, returning true if the first precedes the second. This predicate must satisfy the standard mathematical definition of a strict weak ordering. The precise requirements are stated below, but what they roughly mean is that a Strict Weak Ordering has to behave the way that "less than" behaves: if a is less than b then b is not less than a, if a is less than b and b is less than c then a is less than c, and so on.

    严格偏序集=二元关系集+二元关系的反自反性+二元关系的传递性+二元关系的反对称性。

    Refinement of

    Binary Predicate

    Associated types

    First argument type The type of the Strict Weak Ordering's first argument.
    Second argument type The type of the Strict Weak Ordering's second argument. The first argument type and second argument type must be the same.
    Result type The type returned when the Strict Weak Ordering is called. The result type must be convertible to bool.

    Notation

    F A type that is a model of Strict Weak Ordering
    X The type of Strict Weak Ordering's arguments.
    f Object of type F
    xyz Object of type X

    Definitions

    • Two objects x and y are equivalent if both f(x, y) and f(y, x) are false. Note that an object is always (by the irreflexivity invariant) equivalent to itself.

    Valid expressions

    None, except for those defined in the  Binary Predicate  requirements.

    Expression semantics

    NameExpressionPreconditionSemanticsPostcondition
    Function call f(x, y) The ordered pair (x,y) is in the domain of f Returns true if x precedes y, and false otherwise The result is either true or false

    Complexity guarantees

    Invariants

    Irreflexivity f(x, x) must be false.
    Antisymmetry f(x, y) implies !f(y, x)
    Transitivity f(x, y) and f(y, z) imply f(x, z).
    Transitivity of equivalence Equivalence (as defined above) is transitive: if x is equivalent to y and y is equivalent to z, then x is equivalent to z. (This implies that equivalence does in fact satisfy the mathematical definition of an equivalence relation.) [1]

    Models

    Notes

    [1] The first three axioms, irreflexivity, antisymmetry, and transitivity, are the definition of a partial ordering; transitivity of equivalence is required by the definition of a strict weak ordering. A total ordering is one that satisfies an even stronger condition: equivalence must be the same as equality.

  • 相关阅读:
    Git与GitHub关联
    利用GitHub上的SimpleMemory装扮博客园
    第5课第4节_Binder系统_C程序示例_测试与总结
    第5课第1节_Binder系统_C程序示例_框架分析
    第4课第4节_Android灯光系统_源码分析_电池灯
    第4课第3节_Android灯光系统_编写HAL_lights.c
    第2课第1节_Android灯光系统_led_class驱动
    第4课第1节_Android灯光系统_总体框架
    Android 优秀博客
    4.5节_Android硬件访问服务使用反射
  • 原文地址:https://www.cnblogs.com/riskyer/p/3395459.html
Copyright © 2011-2022 走看看